Xiaoyong Liao
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoyong Liao.
Journal of Hazardous Materials | 2013
Dan Zhao; Xiaoyong Liao; Xiulan Yan; Scott G. Huling; Tuanyao Chai; Huan Tao
The influence of persulfate activation methods on polycyclic aromatic hydrocarbons (PAHs) degradation was investigated and included thermal, citrate chelated iron, and alkaline, and a hydrogen peroxide (H₂O₂)-persulfate binary mixture. Thermal activation (60 °C) resulted in the highest removal of PAHs (99.1%) and persulfate consumption during thermal activation varied (0.45-1.38 g/kg soil). Persulfate consumption (0.91-1.22 g/kg soil) and PAHs removal (73.3-82.9%) varied using citrate chelated iron. No significant differences in oxidant consumption and PAH removal was measured in the H₂O₂-persulfate binary mixture and alkaline activated treatment systems, relative to the unactivated control. Greater removal of high molecular weight PAHs was measured with persulfate activation. Electron spin resonance spectra indicated the presence of hydroxyl radicals in thermally activated systems; weak hydroxyl radical activity in the H₂O₂-persulfate system; and superoxide radicals were predominant in alkaline activated systems. Differences in oxidative ability of the activated persulfate were related to different radicals generated during activation.
Environmental Science & Technology | 2009
Qing-En Xie; Xiulan Yan; Xiaoyong Liao; Xia Li
Arsenic (As) contaminated soils and waters are becoming major global environmental and human health risks. The identification of natural hyperaccumulators of As opens the door for phytoremediation of the arsenic contaminant. Pteris vittata is the first identified naturally evolving As hyperaccumulator. More than a decade after its discovery, we have made great progress in understanding the uptake, transport, and detoxification of As in the fern. The molecular mechanisms controlling As accumulation in P. vittata are now beginning to be recognized. In this review, we will try to summarize what we have learned about this As accumulator, with particular emphasis on the current knowledge of the physiological and molecular mechanisms of arsenic phytoremediation. We also discuss the potential strategies to further enhance phytoextraction abilities of P. vittata.
International Journal of Phytoremediation | 2012
Q. Yang; Shuxin Tu; G. Wang; Xiaoyong Liao; Xiulan Yan
Arsenic is a common contaminant in soils and water. It is well established that the fern Pteris vittata L. is an As hyperaccumulator and therefore has potential to phyroremediate As-polluted soils. Also, it is accepted that rhizosphere microflora play an enhancing role in plant uptake of metallic elements from soils. Studies showed that hydroponiclly grown P. Vittata accumulated arsenite more than the arsenate form of As apparently because arsenate and phosphate are analogues and therefore its absorption is inhibited by phosphate. The objective of this study was to determine whether addition of five different arsenate-reducing bacteria would enhance arsenic uptake by P. vittata grown in arsenic polluted soils in a field experiment. Results showed that addition of the As reducing bacteria promoted the growth of P. vittata, increased As accumulation, activated soil insoluble As, and reduced As leaching compared to the untreated control. Plant biomass increased by 53% and As uptake by 44%. As leaching was reduced by 29% to 71% depending on the As reducing bacterium. The results in their entirety permitted some insight into the mechanisms by which the arsenate reducing bacteria enhanced the effectiveness of P. vittata to remove As from the polluted soil.
Journal of Geographical Sciences | 2008
Lixia Wang; Zhaohui Guo; Xiyuan Xiao; Tongbin Chen; Xiaoyong Liao; Jie Song; Bin Wu
A total of 219 agricultural soil and 48 vegetable samples were collected from the midstream and downstream of the Xiangjiang River (the Hengyang-Changsha section) in Hunan Province. The accumulation characteristics, spatial distribution and potential risk of heavy metals in the agricultural soils and vegetables were depicted. There are higher accumulations of heavy metals such as As, Cd, Cu, Ni, Pb and Zn in agricultural soils, and the contents of Cd (2.44 mg kg−1), Pb (65.00 mg kg−1) and Zn (144.13 mg kg−1) are 7.97, 3.69 and 1.63 times the corresponding background contents in soils of Hunan Province, respectively. 13.2% of As, 68.5% of Cd, 2.7% of Cu, 2.7% of Ni, 8.7% of Pb and 15.1% of Zn in soil samples from the investigated sites exceeded the maximum allowable heavy metal contents in the China Environmental Quality Standard for Soils (GB15618-1995, Grade II). The pollution characteristics of multi-metals in soils are mainly due to Cd. The contents of As, Cd, Cu, Pb and Zn in vegetable soils are significantly higher than the contents in paddy soils. 95.8%, 68.8%, 10.4% and 95.8% of vegetable samples exceeded the Maximum Levels of Contaminants in Foods (GB2762-2005) for As, Cd, Ni and Pb concentrations, respectively. There are significantly positive correlations between the concentrations of Cd, Pb and Zn in vegetables and the concentrations in the corresponding vegetable soils (p<0.01). It is very necessary to focus on the potential risk of heavy metals for food safety and human health in agricultural soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan Province of China.
Journal of Environmental Sciences-china | 2008
Limei Zhai; Xiaoyong Liao; Tongbin Chen; Xiulan Yan; Hua Xie; Bin Wu; Lixia Wang
The purpose of this study was to assess the extent of cadmium (Cd) contamination in agricultural soil and its potential risk for people. Soils, rice, and vegetables from Chenzhou City, Southern China were sampled and analyzed. In the surface soils, the 95% confidence interval for the mean concentration of Cd varied between 2.72 and 4.83 mg/kg (P < 0.05) in the survey, with a geometric mean concentration of 1.45 mg/kg. Based on the GIS map, two hot spot areas of Cd in agricultural soils with high Cd concentrations were identified to be located around the Shizhuyuan, Jinshiling, and Yaogangxian mines, and the Baoshan and Huangshaping mines, in the center of the city. About 60% of the total investigated area, where the agricultural soil Cd concentration is above 1 mg/kg, is distributed in a central belt across the region. The critical distances, at which the soil Cd concentration were increased by the mining activities, from the mines of the soils were 23 km for the Baoshan mine, 46 km for the Huangshaping mine, and 63 km for the Shizhuyuan mine, respectively. These are distances calculated from models. The Cd concentrations in rice samples ranged from 0.01 to 4.43 mg/kg and the mean dietary Cd intake from rice for an adult was 191 microg/d. Results of risk indexes showed that soil Cd concentrations possessed risks to local residents whose intake of Cd from rice and vegetables grown in soils in the vicinity of the mine was 596 microg/d.
Journal of Environmental Sciences-china | 2008
Xiyuan Xiao; Tongbin Chen; Zhizhuang An; Mei Lei; Zechun Huang; Xiaoyong Liao; Ying-ru Liu
Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (< or = 20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.
Journal of Environmental Sciences-china | 2007
Zechun Huang; Zhizhuang An; Tongbin Chen; Mei Lei; Xiyuan Xiao; Xiaoyong Liao
In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in As-hyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(III)) were studied using Pteris vittata L. under sand culture. Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P. vittata. The reduction in As accumulation was greater in old fronds than in young fronds, and relatively weak in root and rhizome. Moderate increases, from 0.05 to 0.3 mmol/L, in phosphate reduced uptake of As(III) more than As(V), while the reverse was observed at high concentrations of phosphate (> or = 1.0 mmol/L). Phosphate apparently reduced As transport and the proportion of As accumulated in fronds of P. vittata when As was supplied as As(V). It may in part be due to competition between phosphorus and As(V) during transport. In contrast, phosphate had a much smaller effect on As transport when the As was supplied as As(III). Therefore, the results from present experiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P. vittata, especially in the fronds, when exposed to As(V); but the suppression of phosphate to As transport may be insignificant when P. vittata exposed to As(III) under sand culture conditions. The finding will help to understand the interaction of P and As during their uptake process in P.
Environmental Science and Pollution Research | 2014
Lu Sun; Xiaoyong Liao; Xiulan Yan; Ganghui Zhu; Dong Ma
The heavy metal and polycyclic aromatic hydrocarbons (PAHs) contents were evaluated in surface soil and plant samples of 18 wild species collected from 3 typical industrial sites in South Central China. The accumulative characteristics of the plant species for both heavy metal and PAHs were discussed. The simultaneous accumulation of heavy metal and PAHs in plant and soil was observed at all the investigated sites, although disparities in spatial distributions among sites occurred. Both plant and soil samples were characterized by high accumulation for heavy metal at smelting site, moderate enrichment at coke power and coal mining sites, whereas high level of PAHs (16 priority pollutants according to US Environmental Protection Agency) at coke power site, followed sequentially by coal mining and smelting sites. Based on the differences of heavy metal and PAH accumulation behaviors of the studied plant species, heavy metal and PAH accumulation strategies were suggested: Pteris vittata L. and Pteris cretica L. for As and PAHs, Boehmeria nivea (L.) Gaud for Pb, As, and PAHs, and Miscanthus floridulu (Labnll.) Warb for Cu and PAHs. These native plant species could be proposed as promising materials for heavy metal and PAHs combined pollution remediation.
Environmental Pollution | 2011
Lu Sun; Xiulan Yan; Xiaoyong Liao; Yi Wen; Zhongyi Chong; Tao Liang
The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level (≥ 10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination.
Chemosphere | 2015
Zhe Hao; Yonghua Li; Hairong Li; Binggan Wei; Xiaoyong Liao; Tao Liang; Jiangping Yu
The Baiyun Obo deposit is the worlds largest rare earth elements (REE) deposit. We aimed to investigate levels of REE, heavy metals (HMs) and uranium (U) based on morning urine samples in a population in Baiyun Obo and to assess the possible influence of rare earth mining processes on human exposure. In the mining area, elevated levels were found for the sum of the concentrations of light REE (LREE) and heavy REE (HREE) with mean values at 3.453 and 1.151 μg g(-1) creatinine, which were significantly higher than those in the control area. Concentrations of HMs and U in the population increased concomitantly with increasing REE levels. The results revealed that besides REE, HMs and U were produced with REE exploitation. Gender, age, educational level, alcohol and smoking habit were major factors contributing to inter-individual variation. Males were more exposed to these metals than females. Concentrations in people in the senior age group and those with only primary education were low. Drinking and smoking were associated with the levels of LREE, Cr, Cu, Cd and Pb in morning urine. Hence this study provides basic and useful information when addressing public and environmental health challenges in the areas where REE are mined and processed.