Xiaoyong Peng
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoyong Peng.
Shock | 2013
Liangming Liu; Kunlun Tian; Mingying Xue; Yu Zhu; Dan Lan; Xiaoyong Peng; Yue Wu; Tao Li
ABSTRACT Implementation of fluid resuscitation and blood transfusion are greatly limited in prehospital or evacuation settings after severe trauma or war wounds. With uncontrolled hemorrhagic shock rats, we investigated if arginine vasopressin (AVP) in combination with norepinephrine (NE) is independent (or slightly dependent) of fluid resuscitation and can “buy” time for the subsequently definitive treatment of traumatic hemorrhagic shock in the present study. The results showed that AVP (0.4 U/kg) alone or with NE (3 &mgr;g/kg) with one-eighth and one-fourth volumes of total blood volume of lactated Ringer’s infusion significantly increased and maintained the mean arterial pressure. Among all groups, 0.4 U/kg of AVP + NE (3 &mgr;g/kg) with one-eighth volume of lactated Ringer’s infusion had the best effect: it significantly increased and maintained hemodynamics and prolonged the survival time. This early treatment strategy significantly improved the effects of subsequently definitive treatments (after bleeding controlled): it increased the subsequent survival, improved the hemodynamic parameters, improved the cardiac function, and increased the tissue blood flow and oxygen delivery. These results suggested that early application of small doses of AVP (0.4 U/kg) + NE before bleeding control can “buy” time for the definitive treatment of uncontrolled hemorrhagic shock, which may be an effective measure for the early treatment of traumatic hemorrhagic shock.
American Journal of Physiology-heart and Circulatory Physiology | 2014
Tao Li; Xudong Xiao; Jie Zhang; Yu Zhu; Yi Hu; Jiatao Zang; Kaizhi Lu; Tiande Yang; Hengjiang Ge; Xiaoyong Peng; Dan Lan; Liangming Liu
Several medical conditions exhibit age- and sex-based differences. Whether or not traumatic shock exhibits such differences with regard to vascular responsiveness is not clear. In a cohort of 177 healthy subjects and 842 trauma patients (21-82 years) as well as different ages (4, 8, 10, 14, 18, and 24 wk; 1 and 1.5 years) and sexes of Sprague-Dawley normal and traumatic shock rats, the age- and sex-based differences of vascular responsiveness and the underlying mechanisms were investigated. Middle-aged and young women as well as female rats of reproductive age had higher vascular responsiveness in the normal condition and a lower decrease in vascular responsiveness after traumatic shock than older men and male rats of identical age. Exogenous supplementation of 17β-estrdiol increased vascular reactivity in both male and femal rats of 8-24 wk and preserved vascular responsiveness in rats following traumatic shock. No effect was observed in rats 1 to 1.5 years. These protective effects of estrogen were closely related to G protein-coupled receptor (GPR)30, estrogen receptor-mediated Rho kinase, and PKC pathway activation. Vascular responsiveness exhibits age- and sex-based differences in healthy subjects and trauma patients. Estrogen and its receptor (GPR30) mediated activation of Rho kinase and PKC using genomic and nongenomic mechanisms to elicit protective effects in vascular responsiveness. This finding is important for the personalized treatment for several age- and sex-related diseases involving estrogen.
Journal of Surgical Research | 2013
Yu Zhu; Liangming Liu; Xiaoyong Peng; Xiaoli Ding; Guangming Yang; Tao Li
BACKGROUND Previous studies have demonstrated differences among organs in terms of shock-induced vascular reactivity and a role for adenosine A2A receptors (A2ARs) in protection against ischemia/reperfusion injury. However, the contributions of A2ARs to organ-specific vascular reactivity and the protection of vascular responsiveness following shock are currently unknown. METHODS We investigated the role of A2ARs in different arteries, including the left femoral artery (LFA), thoracic aorta (TA), superior mesenteric artery (SMA), right renal artery (RRA), pulmonary artery (PA), and middle cerebral artery (MCA), in hemorrhagic-shock rats. RESULTS The vascular reactivities of the LFA, SMA, RRA, and MCA increased slightly during early shock and then gradually decreased, whereas those of the PA and TA decreased from the start of shock. Different blood vessels lost vascular reactivity at different rates compared with controls; the LFA had the highest rate of loss (64.51%), followed by the SMA (44.69%), TA (36.06%), PA (37.83%), and RRA (32.33%), whereas the MCA had the lowest rate (18.45%). The rate of loss of vascular reactivity in the different vessels was negatively correlated with A2AR expression levels in normal and shock conditions. The highly selective A2AR agonist CGS 21680 significantly improved vascular reactivity, hemodynamic parameters, and animal survival, whereas the specific antagonist SCH58261 further decreased the shock-induced reduction in vascular reactivity and hemodynamic parameters. CONCLUSIONS A2ARs are involved in the regulation and protection of vascular reactivity following shock. A2AR activation may have a beneficial effect on hemorrhagic shock by improving vascular reactivity and hemodynamic parameters.
Journal of Trauma-injury Infection and Critical Care | 2013
Guangming Yang; Tao Li; Jing Xu; Xiaoyong Peng; Liangming Liu
BACKGROUND Vascular hyporeactivity played an important role in many critical illness including shock or sepsis, but the mechanisms are incompletely understood. The objective of the present study was to investigate the roles of major mitogen-activated protein kinases (MAPKs extracellular signal-regulated kinase [ERK], p38 MAPK, and jun NH2-terminal kinase [JNK]) on vascular reactivity and the mechanisms. METHODS With superior mesenteric arteries from hemorrhagic shock rats, the role of p38 MAPK, ERK, and JNK in the regulation of vascular reactivity following shock and their relationship to myosin light chain (MLC20) phosphorylation–dependent pathway was observed. RESULTS ERK, p38 MAPK, and JNK activities in superior mesenteric arteries were increased at early shock and decreased at late shock. Stimulation of MAPKs with angiotensin II (AngII) increased the vascular reactivity, calcium sensitivity, and MLC20 phosphorylation. The increasing effect of AngII on vascular reactivity was antagonized by ERK, p38 MAPK, and JNK inhibitors, while the effect of AngII on calcium sensitivity was only blocked by ERK and p38 MAPK inhibitor, but not by JNK inhibitor. AngII increased the activity of protein kinase C–dependent phosphatase inhibitor of 17-kD (CPI17), integrin-linked kinase (ILK), and zipper-interacting protein kinase (ZIPK), The effect of AngII on CPI17 was blocked by ERK and p38 MAPK inhibitor, while the effect of AngII on ILK and ZIPK was only blocked by ERK inhibitor. CONCLUSION MAPKs participated in the regulation of vascular reactivity during shock. ERK and p38 MAPK is mainly through ILK, ZIPK, and CPI17-mediated MLC20 phosphorylation–dependent pathway, while JNK may be involved in the regulation of vascular reactivity by other mechanisms.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2015
Jie Zhang; Guangming Yang; Yu Zhu; Xiaoyong Peng; Tao Li; Liangming Liu
Connexin (Cx)43 has been shown to participate in several cardiovascular diseases. Increased vascular permeability is a common and severe complication in sepsis or septic shock. Whether or not Cx43 takes part in the regulation of vascular permeability in severe sepsis is not known, and the underlying mechanism has not been described. With cecal ligation and puncture-induced sepsis in rats and lipopolysaccharide (LPS)-treated vascular endothelial cells (VECs) from pulmonary veins, the role of Cx43 in increased vascular permeability and its relationship to the RhoA/Rock1 pathway were studied. It was shown that vascular permeability in the lungs, kidneys, and mesentery in sepsis rats and LPS-stimulated monolayer pulmonary vein VECs was significantly increased and positively correlated with the increased expression of Cx43 and Rock1 in these organs and cultured pulmonary vein VECs. The connexin inhibitor carbenoxolone (10 mg/kg iv) and the Rock1 inhibitor Y-27632 (2 mg/kg iv) alleviated the vascular leakage of lung, mesentery, and kidney in sepsis rats. Overexpressed Cx43 increased the phosphorylation of 20-kDa myosin light chain (MLC20) and the expression of Rock1 and increased the vascular permeability and decreased the transendothelial electrical resistance of pulmonary vein VECs. Cx43 RNA interference decreased the phosphorylation of MLC20 and the expression of Rock1 and decreased LPS-stimulated hyperpermeability of cultured pulmonary vein VECs. The Rock1 inhibitor Y-27632 alleviated LPS- and overexpressed Cx43-induced hyperpermeability of monolayer pulmonary vein VECs. This report shows that Cx43 participates in the regulation of vascular permeability in sepsis and that the mechanism is related to the Rock1-MLC20 phosphorylation pathway.
Journal of Surgical Research | 2015
Yan Lei; Xiaoyong Peng; Liangming Liu; Zhaojun Dong; Tao Li
BACKGROUND Vascular hyporeactivity plays an important role in severe trauma and shock. We investigated the beneficial effect of cyclosporine A (CsA) on traumatic shock and its relationship to vascular reactivity improvement and mitochondrial permeability transition pore (MPTP). MATERIALS AND METHODS Sodium pentobarbital-anesthetized rats were used to induce traumatic hemorrhagic shock by left femur fracture and hemorrhage, the beneficial effects of CsA (1, 5, and 10 mg/kg, intravenously) on animal survival, cardiovascular function, tissue blood perfusion, and mitochondrial function of vital organs were observed. In addition, hypoxia-treated vascular smooth muscle cells from normal rats were used to investigate the relationship of this beneficial effect of CsA to Rho-associated serine/threonine kinase (ROCK) and protein kinase C. RESULTS CsA prolonged the survival time and increased the 24-h survival rate of traumatic hemorrhagic shock (31%, 56%, and 56% in 1, 5, and 10 mg/kg CsA group versus 25% in lactated Ringer solution group). Five milligrams per kilogram of CsA had the best effect, which stabilized and improved the hemodynamics, increased the tissue blood flow, and improved the liver and kidney function including its mitochondrial function in shock rats. CsA had no significant influences on the production of inflammatory mediators and cardiac output after traumatic hemorrhagic shock. Further results indicated that CsA significantly improved the vascular constriction and dilation reactivity of superior mesenteric artery to norepinephrine and acetylcholine, which was antagonized by ROCK inhibitor, Y27632, but not by protein kinase C inhibitor, staurosporine. Further studies showed that CsA restored hypoxia-induced decrease of ROCK activity and inhibited the opening of MPTP in hypoxia-treated vascular smooth muscle cells. CONCLUSIONS CsA is beneficial for the treatment of traumatic hemorrhagic shock. The mechanism is mainly through improving the vascular reactivity, stabilizing the hemodynamics, and increasing tissue perfusion. This beneficial effect of CsA is related to the inhibitory effect of CsA on MPTP opening. ROCK is an important regulator molecule in this process.
Critical Care | 2013
Tao Li; Yu Zhu; Kunlun Tian; Mingying Xue; Xiaoyong Peng; Dan Lan; Liangming Liu
IntroductionOur previous studies demonstrated that 50-60 mmHg mean arterial blood pressure was the ideal target hypotension for uncontrolled hemorrhagic shock during the active hemorrhage in sexually mature rats. The ideal target resuscitation pressure for immature and older rats has not been determined.MethodsTo elucidate this issue, using uncontrolled hemorrhagic-shock rats of different ages and sexes (6 weeks, 14 weeks and 1.5 years representing pre-adult, adult and older rats, respectively), the resuscitation effects of different target pressures (40, 50, 60, 70 and 80 mmHg) on uncontrolled hemorrhagic shock during active hemorrhage and the age and sex differences were observed.ResultsDifferent target resuscitation pressures had different resuscitation outcomes for the same age and sex of rats. The optimal target resuscitation pressures for 6-week-old, 14-week-old and 1.5-year-old rats were 40 to 50 mmHg, 50 to 60 mmHg and 70 mmHg respectively. Ideal target resuscitation pressures were significantly superior to other resuscitation pressures in improving the hemodynamics, blood perfusion, organ function and animal survival of uncontrolled hemorrhagic-shock rats (P < 0.01). For same target resuscitation pressures, the beneficial effect on hemorrhagic shock had a significant age difference (P < 0.01) but no sex difference (P > 0.05). Different resuscitation pressures had no effect on coagulation function.ConclusionHemorrhagic-shock rats at different ages have different target resuscitation pressures during active hemorrhage. The ideal target resuscitation hypotension for 6-week-old, 14-week-old and 1.5-year-old rats was 40 to 50 mmHg, 50 to 60 mmHg and 70 mmHg, respectively. Their resuscitation effects have significant age difference but had no sex difference.
Shock | 2016
Yu Zhu; Huiling Wu; Yue Wu; Jie Zhang; Xiaoyong Peng; Jiatao Zang; Xinming Xiang; Liangming Liu; Tao Li
Objective: Intermedin (IMD) is a calcitonin gene-related peptide shown to have a protective effect on myocardial function in ischemia-reperfusion injury. Whether IMD has beneficial effect in severe sepsis and septic shock (and its underlying mechanisms) is not known. Methods: We induced septic shock using cecal ligation and puncture (CLP). We focused on the potential beneficial effect of IMD1-53 on cardiac papillary muscle and cardiomyocytes against septic shock and its relationship with the protection of cardiac function. Results: Early (immediately after CLP) and late (12 h after CLP) administration of IMD1-53 (0.5 &mgr;g/kg) improved animal survival significantly, increased cardiac contractility and function, and improved tissue perfusion and oxygen delivery. The effect of early administration of IMD1-53 was better than that of late administration. The Rho kinase/TnI and BKCa pathways participated in the protective effect of IMD1-53 on cardiac function in septic rats. An inhibitor of Rho kinase (Y-27632) or a BKCa opener (NS1619) abolished the protective effect of IMD1-53 on cardiac function. IMD1-53 increased expression of Rho kinase in cardiac muscle and inhibited TnI phosphorylation. IMD1-53 inhibited currents in BKCa channels and intracellular calcium concentration in cardiomyocytes. Conclusions: IMD1-53 is beneficial against severe sepsis/septic shock. IMD1-53 can improve cardiac contractility and cardiac function significantly, and then improve tissue perfusion and oxygen delivery. Rho kinase and the BKCa pathways have important roles in these effects. These findings provide a new treatment strategy for severe sepsis with cardiac dysfunction.
Journal of Trauma-injury Infection and Critical Care | 2015
Guangming Yang; Yi Hu; Xiaoyong Peng; Yu Zhu; Jiatao Zang; Tao Li; Liangming Liu
BACKGROUND The optimal resuscitation strategy for traumatic hemorrhagic shock is not completely determined. The objective of the present study was to investigate whether hypotensive resuscitation in combination with arginine vasopressin (AVP) can prolong the hypotensive resuscitation time by minimizing blood loss and stabilizing hemodynamics for uncontrolled hemorrhagic shock. METHODS With an established rat model of uncontrolled hemorrhagic shock, we compared the beneficial effects of hypotensive resuscitation in combination with AVP to maintain blood pressure at 50 mm Hg for 3 hours to hypotensive resuscitation alone on animal survival, blood loss, and vital organ functions. RESULTS Hypotensive resuscitation in combination with AVP maintenance for 3 hours significantly reduced total blood loss and fluid requirement during hypotensive resuscitation period and significantly improved the survival of shock rats as compared with hypotensive resuscitation alone. Among the four concentrations of AVP, 5 × 10−4 U/mL had the best effect: it significantly improved hemodynamics and increased cardiac function, oxygen delivery, as well as hepatic blood flow and hepatic function in the shock rats. However, renal blood flow in the hypotensive resuscitation + AVP group was lower than that in the hypotensive resuscitation alone group. CONCLUSION Hypotensive resuscitation in combination with early application of AVP could prolong the tolerance time of hypotensive resuscitation and “buy” longer safe prehospital transport time by reducing blood loss and stabilizing hemodynamics. This strategy may be a promising strategy for the early management of trauma patients with active bleeding.
Critical Care Medicine | 2016
Guangming Yang; Xiaoyong Peng; Yi Hu; Dan Lan; Yue Wu; Tao Li; Liangming Liu
Objective: Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Design: Prospective, randomized, controlled laboratory experiment. Setting: State key laboratory of trauma, burns, and combined injury. Subjects: Five hundred and fifty-two Sprague-Dawley rats. Interventions: Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Measurements and Main Results: Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4-phenylbutyrate increased the nuclear levels of nuclear factor-E2–related factor 2, and decreased the nuclear levels of nuclear factor &kgr;B in hypoxic vascular smooth muscle cells. Conclusions: 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2–related factor 2 and nuclear factor-&kgr;B may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.