Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaozhi Bai is active.

Publication


Featured researches published by Xiaozhi Bai.


Archives of Dermatological Research | 2013

The role of ERK and JNK signaling in connective tissue growth factor induced extracellular matrix protein production and scar formation

Xiaolong Hu; Wang Ht; Jiaqi Liu; Xiaobing Fang; Ke Tao; Yaojun Wang; Na Li; Jihong Shi; Yunchuan Wang; Peng Ji; Weixia Cai; Xiaozhi Bai; Xiongxiang Zhu; Juntao Han; Dahai Hu

CCN2 plays an important role in the pathogenesis of hypertrophic scars (HTSs). Although CCN2 is involved in many fibroproliferative events, the CCN2 induction signaling pathway in HTSs is yet to be elucidated. Here, we first investigated the effect of the mitogen-activated protein kinases (MAPKs) on CCN2-induced α-smooth muscle actin (α-SMA) and collagen I expression in human HTS fibroblasts (HTSFs). Then, we established HTSs in a rabbit ear model and determined the effect of MAPKs on the pathogenesis of HTSs. MAPK pathways were activated by CCN2 in HTSFs. Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors significantly inhibited CCN2-induced expression of α-SMA and collagen I in HTSFs. In the rabbit ear model of the HTS, JNK and ERK inhibitors significantly improved the architecture of the rabbit ear scar and reduced scar formation on the rabbit ear. Our results indicate that ERK and JNK mediate collagen I expression and scarring of the rabbit ear, and may be considered for specific drug therapy targets for HTSs.


PLOS ONE | 2014

Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts

Jihong Shi; Jun Li; Hao Guan; Weixia Cai; Xiaozhi Bai; Xiaobing Fang; Xiaolong Hu; Yaojun Wang; Hongtao Wang; Zhao Zheng; Linlin Su; Dahai Hu; Xiongxiang Zhu

Background The hypertrophic scar (HS) is a serious fibrotic skin condition and a major clinical problem. Interleukin-10 (IL-10) has been identified as a prospective scar-improving compound based on preclinical trials. Our previous work showed that IL-10 has anti-fibrotic effects in transforming growth factor (TGF)-β1-stimulated fibroblasts, as well as potential therapeutic benefits for the prevention and reduction of scar formation. However, relatively little is known about the mechanisms underlying IL-10-mediated anti-fibrotic and scar-improvement actions. Objective To explore the expression of the IL-10 receptor in human HS tissue and primary HS fibroblasts (HSFs), and the molecular mechanisms contributing to the anti-fibrotic and scar-improvement capabilities of IL-10. Methods Expression of the IL-10 receptor was assessed in HS tissue and HSFs by immunohistochemistry, immunofluorescence microscopy, and polymerase chain reaction analysis. Primary HSFs were treated with IL-10, a specific phosphatidylinositol 3 kinase (PI3K) inhibitor (LY294002) or a function-blocking antibody against the IL-10 receptor (IL-10RB). Next, Western blot analysis was used to evaluate changes in the phosphorylation status of AKT and signal transducers and activators of transcription (STAT) 3, as well as the expression levels of fibrosis-related proteins. Results HS tissue and primary HSFs were characterized by expression of the IL-10 receptor and by high expression of fibrotic markers relative to normal controls. Primary HSFs expressed the IL-10 receptor, while IL-10 induced AKT and STAT3 phosphorylation in these cells. In addition, LY294002 blocked AKT and STAT phosphorylation, and also up-regulated expression levels of type I and type III collagen (Col 1 and Col 3) and alpha-smooth muscle actin (α-SMA) in IL-10-treated cells. Similarly, IL-10RB reduced STAT3/AKT phosphorylation and blocked the IL-10-mediated mitigation of fibrosis in HSFs. Conclusion IL-10 apparently inhibits fibrosis by activating AKT and STAT3 phosphorylation downstream of the IL-10 receptor, and by facilitating crosstalk between the PI3K/AKT and STAT3 signal transduction pathways.


PLOS ONE | 2014

MicroRNA-21 regulates hTERT via PTEN in hypertrophic scar fibroblasts.

Hua-Yu Zhu; Chao Li; Wen-Dong Bai; Linlin Su; Jiaqi Liu; Yan Li; Jihong Shi; Weixia Cai; Xiaozhi Bai; Yanhui Jia; Bin Zhao; Xue Wu; Jun Li; Dahai Hu

Background As an important oncogenic miRNA, microRNA-21 (miR-21) is associated with various malignant diseases. However, the precise biological function of miR-21 and its molecular mechanism in hypertrophic scar fibroblast cells has not been fully elucidated. Methodology/Principal Findings Quantitative Real-Time PCR (qRT-PCR) analysis revealed significant upregulation of miR-21 in hypertrophic scar fibroblast cells compared with that in normal skin fibroblast cells. The effects of miR-21 were then assessed in MTT and apoptosis assays through in vitro transfection with a miR-21 mimic or inhibitor. Next, PTEN (phosphatase and tensin homologue deleted on chromosome ten) was identified as a target gene of miR-21 in hypertrophic scar fibroblast cells. Furthermore, Western-blot and qRT-PCR analyses revealed that miR-21 increased the expression of human telomerase reverse transcriptase (hTERT) via the PTEN/PI3K/AKT pathway. Introduction of PTEN cDNA led to a remarkable depletion of hTERT and PI3K/AKT at the protein level as well as inhibition of miR-21-induced proliferation. In addition, Western-blot and qRT-PCR analyses confirmed that hTERT was the downstream target of PTEN. Finally, miR-21 and PTEN RNA expression levels in hypertrophic scar tissue samples were examined. Immunohistochemistry assays revealed an inverse correlation between PTEN and hTERT levels in high miR-21 RNA expressing-hypertrophic scar tissues. Conclusions/Significance These data indicate that miR-21 regulates hTERT expression via the PTEN/PI3K/AKT signaling pathway by directly targeting PTEN, therefore controlling hypertrophic scar fibroblast cell growth. MiR-21 may be a potential novel molecular target for the treatment of hypertrophic scarring.


Biochemical and Biophysical Research Communications | 2014

Acute downregulation of miR-155 at wound sites leads to a reduced fibrosis through attenuating inflammatory response.

Longlong Yang; Jiaqi Liu; Xiaozhi Bai; Lei Fan; Fu Han; Wenbin Jia; Linlin Su; Jihong Shi; Chaowu Tang; Dahai Hu

Fibrosis, tightly associated with wound healing, is a significant symptomatic clinical problem. Inflammatory response was reported to be one of the reasons. MiR-155 is relatively related with the development and requirement of inflammatory cells, so we thought reduce the expression of miR-155 in wound sites could improve the quality of healing through reduce inflammatory response. To test this hypothesis, locally antagonizing miR-155 by directly injecting antagomir to wound edge was used to reduce the expression of miR-155. We found wounds treated with miR-155 antagomir had an obvious defect in immune cells requirements, pro-inflammatory factors IL-1β and TNF-α reduced while anti-inflammatory factor IL-10 increased. With treatment of miR-155 antagomir, the expression of α-smooth muscle actin (α-SMA), Col1 and Col3 at wound sites all reduced both from mRNA levels and protein expressions. Wounds injected with antagomir resulted in the structure improvement of collagen, the collagen fibers were more regularly arranged. Meanwhile the rate of healing did not change significantly. These results provide direct evidences that miR-155 play an important role in the pathogenesis of fibrosis and show that miR-155 antagomir has the potential therapy in prevention and reduction of skin fibrosis.


Burns | 2012

A potential skin substitute constructed with hEGF gene modified HaCaT cells for treatment of burn wounds in a rat model.

Dahai Hu; Zhanfeng Zhang; Yangang Zhang; Wanfu Zhang; Wang Ht; Weixia Cai; Xiaozhi Bai; Hua-Yu Zhu; Jihong Shi; Chaowu Tang

This study aimed to investigate the feasibility of using an immortal keratinocyte cell line, HaCaT cells, to effectively deliver epidermal growth factor (EGF) in a skin substitute to treat burn wounds. The skin equivalent was constructed with human EGF (hEGF) gene modified HaCaT cells obtained through stable gene transfection; these were applied to full thickness burn wounds in a rat model. The results showed that the hEGF gene modified HaCaT cells produced more than 390ng/l of bioactive hEGF in the culture supernatant. K19 and integrin-β1 as keratinocyte differentiation markers were elevated in the hEGF gene modified HaCaT cells which were shown to be non-tumorigenic. The skin equivalent constructed with hEGF gene modified HaCaT cells demonstrated improved epidermal morphogenesis with a thick and compact epidermis. Wound healing was accelerated noticeably when applied with this skin substitute seeded with hEGF gene modified HaCaT cells in vivo. The results suggest that HaCaT cells modified with hEGF gene might be promising seed cells for construction of genetically modified skin substitute which can effectively secrete hEGF to accelerate wound repair and regeneration.


Experimental Dermatology | 2015

Loureirin B inhibits fibroblast proliferation and extracellular matrix deposition in hypertrophic scar via TGF‐β/Smad pathway

Xiaozhi Bai; Ting He; Jiaqi Liu; Yunchuan Wang; Lei Fan; Ke Tao; Jihong Shi; Chaowu Tang; Linlin Su; Dahai Hu

The ethanolic extract of Resina Draconis (RDEE) has been reported beneficial to normal wound healing yielding more regularly arranged collagen fibres. Loureirin B, a major component in RDEE, has been supposed to be effective on the prevention and treatment of pathological scars. To investigate the therapeutic effects of loureirin B on hypertrophic scar (HS), fibroblasts from human HS and normal skin (NS) were isolated. Results showed that loureirin B dose‐dependently downregulated both mRNA and protein levels of type I collagen (ColI), type III collagen (ColIII) and α‐smooth muscle actin (α‐SMA) in HS fibroblasts. Loureirin B also suppressed fibroblast proliferative activity and redistributed cell cycle, but did not affect cell apoptosis. In vivo rabbit ear scar model, loureirin B significantly improved the arrangement and deposition of collagen fibres, decreased protein levels of ColI, ColIII and α‐SMA and suppressed myofibroblast differentiation and scar proliferative activity. In NS fibroblasts, loureirin B effectively inhibited TGF‐β1‐induced upregulation of ColI, ColIII and α‐SMA levels, myofibroblast differentiation and the activation of Smad2 and Smad3. Loureirin B also affected mRNA levels of major MMPs and TIMPs in TGF‐β1‐stimulated fibroblasts. Taken together, this study demonstrates that loureirin B could downregulate the expression of fibrosis‐related molecules by regulating MMPs and TIMPs levels, inhibit scar fibroblast proliferation and suppress TGF‐β1‐induced fibrosis, during which TGF‐β1/Smad2/3 pathway is likely involved. These findings suggest that loureirin B is a potential therapeutic compound for HS treatment.


Burns | 2011

Smad interacting protein 1 as a regulator of skin fibrosis in pathological scars

Zhanfeng Zhang; Yangang Zhang; Dahai Hu; Jihong Shi; Jiaqi Liu; Zhou-ting Zhao; Wang Ht; Xiaozhi Bai; Weixia Cai; Hua-Yu Zhu; Chao-wu Tang

Keloids and hypertrophic scars are significant symptomatic clinical problems characterized by the excessive and abnormal deposition of collagen-based extracellular matrix (ECM) components. However, the molecular basis of keloid and hypertrophic scar formation has not been fully elucidated. Here, we demonstrated that down-regulation of the transcription factor Smad interacting protein 1 (SIP1) could be relevant to keloid and hypertrophic scar formation. The results of the present study show that the level of SIP1 mRNA is significantly decreased in pathological scar tissues and in normal skin and pathological scar fibroblasts treated with transforming growth factor β1 (TGF-β1). In contrast, the expression of SIP1 mRNA is not decreased in normotrophic scar samples. The SIP1 mRNA level inversely correlates with the mRNA level of type I collagen (COL1A2) and directly correlates with the mRNA level of matrix metalloproteinase-1 (MMP1). Overexpression of SIP1 in keloid and hypertrophic scar fibroblasts represses TGF-β1-stimulated COL1A2 expression and induces MMP1 expression. Alternatively, knockdown of SIP1 in normal skin fibroblasts enhance TGF-β1-induced COL1A2 levels. These findings suggest that SIP1 could be a regulator of skin fibrosis, and depletion of SIP1 in pathological scar tissues could result in an up-regulation of collagen and down-regulation of matrix metalloproteinase, leading to an abnormal accumulation of ECM along with fibrosis and pathological scar formation.


Scientific Reports | 2015

SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling.

Xiaozhi Bai; Lei Fan; Ting He; Wenbin Jia; Longlong Yang; Jun Zhang; Yang Liu; Jihong Shi; Linlin Su; Dahai Hu

Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after burn injury appeared an increasing trend after a short period of suppression. The upregulation of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes, reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat pulmonary tissues suffering from severe burn. We next used primary pulmonary microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate in vivo rat lung tissue after burn injury, and found that BS significantly suppressed SIRT1 expression, increased cell apoptosis, and activated p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and activation of p38 MAPK. Taken together, these results indicate that SIRT1 might protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis via p38 MAPK signaling, suggesting its potential therapeutic effects on the treatment of ALI.


Shock | 2013

Systemic inflammatory responses and multiple organ dysfunction syndrome following skin burn wound and Pseudomonas aeruginosa infection in mice.

Na Li; Xiaolong Hu; Yang Liu; Yaojun Wang; Yunchuan Wang; Jiaqi Liu; Weixia Cai; Xiaozhi Bai; Xiongxiang Zhu; Juntao Han; Dahai Hu

ABSTRACT Burn wound–related sepsis is associated with the development of systemic inflammatory response syndrome and multiple organ dysfunction syndrome (MODS). This study is aimed at investigating the development and progression of SIS and MODS in a mouse model of skin burn sepsis. C57BL/6J mice were randomly divided into the sham, burn, Pseudomonas, and burn/Pseudomonas groups. The back skin of the sham, burn, and burn/Pseudomonas groups was burned about 10% of total area with using 37°C or 98°C water for 8 s, respectively, followed by inoculating with Pseudomonas aeruginosa. The Pseudomonas group was infected with P. aeruginosa without burn injury. Their body weights, mortality, organ histology, and function as well as systemic inflammation were measured longitudinally. The burn/Pseudomonas mice lost more body weights than did mice from the other groups and had a significantly higher mortality rate (P < 0.05). The burn/Pseudomonas mice exhibited significantly higher levels of bacterial loads in different organs and serum endotoxin, interleukin 1&bgr;, interleukin 6, tumor necrosis factor &agr;, and C-reactive protein than those in mice from the other groups (P < 0.05). The burn/Pseudomonas mice also displayed more severe liver, lung, and kidney tissue damage and impaired organ functions, particularly at 72 h after inoculation than did the burn and Pseudomonas groups of mice. Our data indicate that burn and P. aeruginosa infection induced severe sepsis and rapidly progressed into systemic inflammatory response syndrome and MODS in mice.


Scientific Reports | 2016

Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1

Xiaozhi Bai; Ting He; Jianxin Gao; Yang Liu; Jiaqi Liu; Shichao Han; Yan Li; Jihong Shi; Juntao Han; Ke Tao; Song-Tao Xie; Hongtao Wang; Dahai Hu

Acute kidney injury (AKI) is a common complication after severe burns. Melatonin has been reported to protect against multiple organ injuries by increasing the expression of SIRT1, a silent information regulator that regulates stress responses, inflammation, cellular senescence and apoptosis. This study aimed to investigate the protective effects of melatonin on renal tissues of burned rats and the role of SIRT1 involving the effects. Rat severely burned model was established, with or without the administration of melatonin and SIRT1 inhibitor. The renal function and histological manifestations were determined to evaluate the severity of kidney injury. The levels of acetylated-p53 (Ac-p53), acetylated-p65 (Ac-p65), NF-κB, acetylated-forkhead box O1 (Ac-FoxO1), Bcl-2 and Bax were analyzed to study the underlying mechanisms. Our results suggested that severe burns could induce acute kidney injury, which could be partially reversed by melatonin. Melatonin attenuated oxidative stress, inflammation and apoptosis accompanied by the increased expression of SIRT1. The protective effects of melatonin were abrogated by the inhibition of SIRT1. In conclusion, we demonstrate that melatonin improves severe burn-induced AKI via the activation of SIRT1 signaling.

Collaboration


Dive into the Xiaozhi Bai's collaboration.

Top Co-Authors

Avatar

Dahai Hu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jihong Shi

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Linlin Su

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Weixia Cai

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan Li

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiaqi Liu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Julei Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ke Tao

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Shichao Han

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiongxiang Zhu

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge