Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xichen Bao is active.

Publication


Featured researches published by Xichen Bao.


Nature Protocols | 2012

Generation of human induced pluripotent stem cells from urine samples

Ting Zhou; Christina Benda; Sarah Dunzinger; Yinghua Huang; Jenny Cy Ho; Jiayin Yang; Yu Wang; Ya Zhang; Qiang Zhuang; Yanhua Li; Xichen Bao; Hung-Fat Tse; Johannes Grillari; Regina Grillari-Voglauer; Duanqing Pei; Miguel A. Esteban

Human induced pluripotent stem cells (iPSCs) have been generated with varied efficiencies from multiple tissues. Yet, acquiring donor cells is, in most instances, an invasive procedure that requires laborious isolation. Here we present a detailed protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine. This method is advantageous in many circumstances, as the isolation of urinary cells is simple (30 ml of urine are sufficient), cost-effective and universal (can be applied to any age, gender and race). Moreover, the entire procedure is reasonably quick—around 2 weeks for the urinary cell culture and 3–4 weeks for the reprogramming—and the yield of iPSC colonies is generally high—up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) also show excellent differentiation potential, and thus represent a good choice for producing pluripotent cells from normal individuals or patients with genetic diseases, including those affecting the kidney.


Journal of Biological Chemistry | 2011

Microrna cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition

Baojian Liao; Xichen Bao; Longqi Liu; Shipeng Feng; Athanasios Zovoilis; Wenbo Liu; Yanting Xue; Jie Cai; Xiangpeng Guo; Baoming Qin; Ruosi Zhang; Jiayan Wu; Liangxue Lai; Maikun Teng; Liwen Niu; Biliang Zhang; Miguel A. Esteban; Duanqing Pei

MicroRNAs (miRNAs) are emerging critical regulators of cell function that frequently reside in clusters throughout the genome. They influence a myriad of cell functions, including the generation of induced pluripotent stem cells, also termed reprogramming. Here, we have successfully delivered entire miRNA clusters into reprogramming fibroblasts using retroviral vectors. This strategy avoids caveats associated with transient transfection of chemically synthesized miRNA mimics. Overexpression of 2 miRNA clusters, 106a–363 and in particular 302–367, allowed potent increases in induced pluripotent stem cell generation efficiency in mouse fibroblasts using 3 exogenous factors (Sox2, Klf4, and Oct4). Pathway analysis highlighted potential relevant effectors, including mesenchymal-to-epithelial transition, cell cycle, and epigenetic regulators. Further study showed that miRNA cluster 302–367 targeted TGFβ receptor 2, promoted increased E-cadherin expression, and accelerated mesenchymal-to-epithelial changes necessary for colony formation. Our work thus provides an interesting alternative for improving reprogramming using miRNAs and adds new evidence for the emerging relationship between pluripotency and the epithelial phenotype.


Nature Methods | 2013

Generation of integration-free neural progenitor cells from cells in human urine

Linli Wang; Wenhao Huang; Huanxing Su; Yanting Xue; Zhenghui Su; Baojian Liao; Hao Wang; Xichen Bao; Dajiang Qin; Jufang He; Wutian Wu; Kf So; Guangjin Pan; Duanqing Pei

Human neural stem cells hold great promise for research and therapy in neural disease. We describe the generation of integration-free and expandable human neural progenitor cells (NPCs). We combined an episomal system to deliver reprogramming factors with a chemically defined culture medium to reprogram epithelial-like cells from human urine into NPCs (hUiNPCs). These transgene-free hUiNPCs can self-renew and can differentiate into multiple functional neuronal subtypes and glial cells in vitro. Although functional in vivo analysis is still needed, we report that the cells survive and differentiate upon transplant into newborn rat brain.


Cell Research | 2015

LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration

Lijun Wang; Yu Zhao; Xichen Bao; Xihua Zhu; Yvonne Ka Yin Kwok; Kun Sun; Xiaona Chen; Yongheng Huang; Ralf Jauch; Miguel A. Esteban; Hao Sun; Huating Wang

Emerging studies document the roles of long non-coding RNAs (LncRNAs) in regulating gene expression at chromatin level but relatively less is known how they regulate DNA methylation. Here we identify an lncRNA, Dum (developmental pluripotency-associated 2 (Dppa2) Upstream binding Muscle lncRNA) in skeletal myoblast cells. The expression of Dum is dynamically regulated during myogenesis in vitro and in vivo. It is also transcriptionally induced by MyoD binding upon myoblast differentiation. Functional analyses show that it promotes myoblast differentiation and damage-induced muscle regeneration. Mechanistically, Dum was found to silence its neighboring gene, Dppa2, in cis through recruiting Dnmt1, Dnmt3a and Dnmt3b. Furthermore, intrachromosomal looping between Dum locus and Dppa2 promoter is necessary for Dum/Dppa2 interaction. Collectively, we have identified a novel lncRNA that interacts with Dnmts to regulate myogenesis.


Cell Research | 2015

The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters.

Xichen Bao; Haitao Wu; Xihua Zhu; Xiangpeng Guo; Andrew Paul Hutchins; Zhiwei Luo; Hong Song; Yongqiang Chen; Keyu Lai; Menghui Yin; Lingxiao Xu; Liang Zhou; Jiekai Chen; Dongye Wang; Baoming Qin; Jon Frampton; Hung-Fat Tse; Duanqing Pei; Huating Wang; Biliang Zhang; Miguel A. Esteban

Recent studies have boosted our understanding of long noncoding RNAs (lncRNAs) in numerous biological processes, but few have examined their roles in somatic cell reprogramming. Through expression profiling and functional screening, we have identified that the large intergenic noncoding RNA p21 (lincRNA-p21) impairs reprogramming. Notably, lincRNA-p21 is induced by p53 but does not promote apoptosis or cell senescence in reprogramming. Instead, lincRNA-p21 associates with the H3K9 methyltransferase SETDB1 and the maintenance DNA methyltransferase DNMT1, which is facilitated by the RNA-binding protein HNRNPK. Consequently, lincRNA-p21 prevents reprogramming by sustaining H3K9me3 and/or CpG methylation at pluripotency gene promoters. Our results provide insight into the role of lncRNAs in reprogramming and establish a novel link between p53 and heterochromatin regulation.


Current Opinion in Genetics & Development | 2012

The mesenchymal-to-epithelial transition in somatic cell reprogramming.

Miguel A. Esteban; Xichen Bao; Qiang Zhuang; Ting Zhou; Baoming Qin; Duanqing Pei

The epithelial-to-mesenchymal transition (EMT) is a process that confers migratory characteristics to epithelial cells. It is a major force driving embryonic development, tissue fibrosis and malignant progression, and can also create cells with properties of stem cells. The mesenchymal-to-epithelial transition (MET) has the opposite course and frequently coexists with the EMT, but the underlying mechanisms are less well studied. The recent discovery that the MET is required for transforming somatic cells into pluripotent stem cells suggests that the intersection between EMT and MET is a fundamental crossroad for cell fate decisions. Further understanding of the molecular events controlling both situations has relevant implications for regenerative medicine and disease.


Nature Communications | 2015

Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1

Liang Zhou; Kun Sun; Yu Zhao; Suyang Zhang; Xuecong Wang; Yuying Li; Leina Lu; Xiaona Chen; Fengyuan Chen; Xichen Bao; Xihua Zhu; Lijun Wang; Ling Yin Tang; Miguel A. Esteban; Chi Chiu Wang; Ralf Jauch; Hao Sun; Huating Wang

Little is known how lincRNAs are involved in skeletal myogenesis. Here we describe the discovery of Linc-YY1 from the promoter of the transcription factor (TF) Yin Yang 1 (YY1) gene. We demonstrate that Linc-YY1 is dynamically regulated during myogenesis in vitro and in vivo. Gain or loss of function of Linc-YY1 in C2C12 myoblasts or muscle satellite cells alters myogenic differentiation and in injured muscles has an impact on the course of regeneration. Linc-YY1 interacts with YY1 through its middle domain, to evict YY1/Polycomb repressive complex (PRC2) from target promoters, thus activating the gene expression in trans. In addition, Linc-YY1 also regulates PRC2-independent function of YY1. Finally, we identify a human Linc-YY1 orthologue with conserved function and show that many human and mouse TF genes are associated with lincRNAs that may modulate their activity. Altogether, we show that Linc-YY1 regulates skeletal myogenesis and uncover a previously unappreciated mechanism of gene regulation by lincRNA.


Current Opinion in Cell Biology | 2013

MicroRNAs in somatic cell reprogramming

Xichen Bao; Xihua Zhu; Baojian Liao; Christina Benda; Qiang Zhuang; Duanqing Pei; Baoming Qin; Miguel A. Esteban

The generation of induced pluripotent stem (iPS) cells by exogenous transcription factors involves a comprehensive rearrangement of cellular functions, including the microRNA profile. The resulting cell lines are similar to embryonic stem (ES) cells and have therefore raised much interest for in vitro studies and the perspective of clinical application. Yet, microRNAs are not mere listeners of the reprogramming orchestra but play an active role in the process. In consequence, overexpression or suppression of individual microRNAs has profound effects in colony formation efficiency, and in combination they can produce iPS cells without added transcription factors. Moreover, variations in microRNA expression of iPS/ES cells can predict their differentiation potential and may have consequences at other levels. Altogether, these findings highlight the relevance of pursuing further these studies.


Nature Cell Biology | 2015

Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming

Yasong Wu; Yuan Li; Hui Zhang; Yinghua Huang; Ping Zhao; Yujia Tang; Xiaohui Qiu; Yue Ying; Wen Li; Su Ni; Meng Zhang; Longqi Liu; Yan Xu; Qiang Zhuang; Zhiwei Luo; Christina Benda; Hong Song; Baohua Liu; Liangxue Lai; Xingguo Liu; Hung-Fat Tse; Xichen Bao; Wai-Yee Chan; Miguel A. Esteban; Baoming Qin; Duanqing Pei

We describe robust induction of autophagy during the reprogramming of mouse fibroblasts to induced pluripotent stem cells by four reprogramming factors (Sox2, Oct4, Klf4 and c-Myc), henceforth 4F. This process occurs independently of p53 activation, and is mediated by the synergistic downregulation of mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy-related genes. The 4F coordinately repress mTORC1, but bifurcate in their regulation of autophagy-related genes, with Klf4 and c-Myc inducing them but Sox2 and Oct4 inhibiting them. On one hand, inhibition of mTORC1 facilitates reprogramming by promoting cell reshaping (mitochondrial remodelling and cell size reduction). On the other hand, mTORC1 paradoxically impairs reprogramming by triggering autophagy. Autophagy does not participate in cell reshaping in reprogramming but instead degrades p62, whose accumulation in autophagy-deficient cells facilitates reprogramming. Our results thus reveal a complex signalling network involving mTORC1 inhibition and autophagy induction in the early phase of reprogramming, whose delicate balance ultimately determines reprogramming efficiency.


Cell Stem Cell | 2014

Transcriptional Pause Release Is a Rate-Limiting Step for Somatic Cell Reprogramming

Longqi Liu; Yan Xu; Minghui He; Meng Zhang; Fenggong Cui; Leina Lu; Mingze Yao; Weihua Tian; Christina Benda; Qiang Zhuang; Zhijian Huang; Wenjuan Li; Xiangchun Li; Ping Zhao; Wenxia Fan; Zhiwei Luo; Yuan Li; Yasong Wu; Andrew Paul Hutchins; Dongye Wang; Hung-Fat Tse; Axel Schambach; Jon Frampton; Baoming Qin; Xichen Bao; Hongjie Yao; Biliang Zhang; Hao Sun; Duanqing Pei; Huating Wang

Reactivation of the pluripotency network during somatic cell reprogramming by exogenous transcription factors involves chromatin remodeling and the recruitment of RNA polymerase II (Pol II) to target loci. Here, we report that Pol II is engaged at pluripotency promoters in reprogramming but remains paused and inefficiently released. We also show that bromodomain-containing protein 4 (BRD4) stimulates productive transcriptional elongation of pluripotency genes by dissociating the pause release factor P-TEFb from an inactive complex containing HEXIM1. Consequently, BRD4 overexpression enhances reprogramming efficiency and HEXIM1 suppresses it, whereas Brd4 and Hexim1 knockdown do the opposite. We further demonstrate that the reprogramming factor KLF4 helps recruit P-TEFb to pluripotency promoters. Our work thus provides a mechanism for explaining the reactivation of pluripotency genes in reprogramming and unveils an unanticipated role for KLF4 in transcriptional pause release.

Collaboration


Dive into the Xichen Bao's collaboration.

Top Co-Authors

Avatar

Miguel A. Esteban

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Baoming Qin

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Zhuang

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Xihua Zhu

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Zhiwei Luo

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Hung-Fat Tse

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Christina Benda

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Jiayin Yang

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Xiangpeng Guo

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge