Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xichen Zhang is active.

Publication


Featured researches published by Xichen Zhang.


Journal of Ethnopharmacology | 2013

Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-κB and MAPKs signaling pathways

Yunhe Fu; Bo Liu; Naisheng Zhang; Zhicheng Liu; Dejie Liang; Fengyang Li; Yongguo Cao; Xiaosheng Feng; Xichen Zhang; Zhengtao Yang

ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis as a traditional Chinese herb has long been used for the treatment of anxiety, cough, headache and allergic diseases, and also have been used in traditional Chinese medicine to treat a variety of mental disorders including depression. AIM OF THE STUDY Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to have anti-inflammatory properties. However, the underlying molecular mechanisms are not well understood. The aim of this study was to investigate the molecular mechanism of magnolol in modifying lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 cells. MATERIAL AND METHODS The purity of magnolol was determined by high performance liquid chromatography. RAW264.7 cells were stimulated with LPS in the presence or absence of magnolol. The expression of proinflammatory cytokines were determined by ELISA and reverse transcription-PCR. Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and Toll-like receptor 4 (TLR4) were determined by Western blot. Further analyses were performed on mTLR4 and mMD2 co-transfected HEK293 cells. RESULTS The result showed that the purity of magnolol used in this study was 100%. Magnolol inhibited the expression of TNF-α, IL-6 and IL-1β in LPS-stimulated RAW264.7 cells in a dose-dependent manner. Western blot analysis showed that magnolol suppressed LPS-induced NF-κB activation, IκBα degradation, phosphorylation of ERK, JNK and P38. Magnolol could significantly down-regulated the expression of TLR4 stimulating by LPS. Furthermore, magnolol suppressed LPS-induced IL-8 production in HEK293-mTLR4/MD-2 cells. CONCLUSIONS Our results suggest that magnolol exerts an anti-inflammatory property by down-regulated the expression of TLR4 up-regulated by LPS, thereby attenuating TLR4 mediated the activation of NF-κB and MAPK signaling and the release of pro-inflammatory cytokines. These findings suggest that magnolol may be a therapeutic agent against inflammatory diseases.


European Journal of Pharmacology | 2013

Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-κB and MAPKs signal pathways

Depeng Li; Naisheng Zhang; Yongguo Cao; Wen Zhang; Gaoli Su; Yong Sun; Zhicheng Liu; Fengyang Li; Dejie Liang; Bo Liu; Mengyao Guo; Yunhe Fu; Xichen Zhang; Zhengtao Yang

Emodin is an anthraquinone derivative from the Chinese herb Radix et Rhizoma Rhei. It has been reported that emodin possesses a number of biological properties, such as anti-inflammatory, anti-virus, anti-bacteria, anti-tumor, and immunosuppressive properties. However, the effect of emodin on mastitis is not yet known. The aim of this study was to investigate whether emodin has protective effect against lipopolysaccharide (LPS)-induced mastitis in a mouse model. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Emodin was administered intraperitoneally with the dose of 1, 2, and 4 mg/kg respectively 1h before and 12h after induction of LPS. Emodin significantly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), concentration of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), mRNA expression levels of TNF-α, IL-1β and IL-6, which were increased in LPS-induced mouse mastitis. In addition, emodin influenced nuclear factor kappa-B signal transduction pathway by inhibiting activation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κB α (IκBα), and emodin also influenced mitogen activated protein kinases signal transduction pathway by depression activation of p38, extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). In conclusion, these results indicated that emodin could exert beneficial effects on experimental mastitis induced by LPS and may represent a novel treatment strategy for mastitis.


International Journal for Parasitology | 2012

Population genetic analysis of Enterocytozoon bieneusi in humans.

Wei Li; Vitaliano Cama; Yaoyu Feng; Robert H. Gilman; Caryn Bern; Xichen Zhang; Lihua Xiao

Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wrights fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi.


PLOS ONE | 2014

Genotypes of Enterocytozoon bieneusi in Livestock in China: High Prevalence and Zoonotic Potential

Wei Li; Yijing Li; Weizhi Li; Jinping Yang; Mingxin Song; Ruinan Diao; Honglin Jia; Yixin Lu; Jun Zheng; Xichen Zhang; Lihua Xiao

Despite many recent advances in genotype characterization of Enterocytozoon bieneusi worldwide and the exploration of the extent of cross-species transmission of microsporidiosis between humans and animals, the epidemiology of this neglected disease in China is poorly understood. In this study, a very high prevalence (60.3%; 94/156) of E. bieneusi infections in farmed pigs in Jilin province was detected by PCR of the ribosomal internal transcribed spacer (ITS). DNA sequence analysis of 88 E. bieneusi–positive specimens identified 12 distinct genotypes (11 known: CHN7, CS-1, CS-4, CS-6, EbpA, EbpB, EbpC, EbpD, EBITS3, G, and Henan-I; one novel: CS-9). Frequent appearance of mixed genotype infections was seen in the study animals. Weaned (74.6%; 53/71) or pre-weaned (68.8%; 22/32) pigs have infection rates significantly higher than growing pigs (35.8%; 19/53) (p<0.01). Likewise, E. bieneusi was detected in 2 of 45 sheep fecal specimens (4.4%) in Heilongjiang province, belonging to the known genotype BEB6. Genotypes EbpA, EbpC, EbpD, and Henan-I examined herein have been documented in the cases of human infections and BEB6, EbpA, EbpC, and EbpD in wastewater in central China. Infections of EbpA and EbpC in humans were also reported in other areas of the world. The other known genotypes (CHN7, CS-1, CS-4, CS-6, EBITS3, EbpB, and G) and the new genotype CS-9 were genetically clustered into a group of existing E. bieneusi genotypes with zoonotic potential. Thus, pigs could be a potential source of human E. bieneusi infections in China.


Veterinary Immunology and Immunopathology | 2013

Lipopolysaccharide increases Toll-like receptor 4 and downstream Toll-like receptor signaling molecules expression in bovine endometrial epithelial cells

Yunhe Fu; Bo Liu; Xiaosheng Feng; Zhicheng Liu; Dejie Liang; Fengyang Li; Depeng Li; Yongguo Cao; Shuang Feng; Xichen Zhang; Naisheng Zhang; Zhengtao Yang

The endometrium is easily contaminated with bacteria and the endometrial epithelial cells (EECs) play an important role in defence against invading pathogens which recognized pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). Toll-like receptor 4 (TLR4) can recognize lipopolysaccharide (LPS) from Gram-negative bacteria and initiates innate immune responses. In this study, we stimulated bovine EECs with LPS from Escherichia coli (E. coli). The expression of TLR4 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The expression of downstream TLR4 signaling molecules was detected by qRT-PCR. The results showed that TLR4 and downstream adaptor molecules, transcription factors and cytokines were up-regulated when bovine EECs were stimulated with LPS. Furthermore, the expression of TOLLIP and β-defensin 5 were up-regulated when cells were stimulated with LPS. The results demonstrated that both MyD88 dependent and independent pathways in TLR4 were activated by LPS in bovine EECs. Bovine EECs have the immune repertoires required in defending against E. coli and play an important role in innate immune defence of the bovine endometrium.


Infection, Genetics and Evolution | 2013

Multilocus sequence typing of Enterocytozoon bieneusi: Lack of geographic segregation and existence of genetically isolated sub-populations☆

Wei Li; Vitaliano Cama; Frederick Olusegun Akinbo; Sandipan Ganguly; Nicholas M. Kiulia; Xichen Zhang; Lihua Xiao

The population structure of Enterocytozoon bieneusi was examined by multilocus sequence typing (MLST) of 64 specimens from AIDS patients in Peru, Nigeria, and India and five specimens from captive baboons in Kenya using a combination of the ribosomal internal transcribed spacer (ITS) and four microsatellite and minisatellite markers. Parasites in different geographic locations (Peru, India, and Nigeria) all had strong and significant linkage disequilibrium (LD) and only limited recombination, indicative of a clonal population structure in E. bieneusi from each location. When isolates of various geographical areas were treated as a single population, phylogenetic analysis and substructural analysis using STRUCTURE found no evidence for the existence of geographically segregated sub-populations. Nevertheless, both analyses revealed the presence of two major genetically isolated groups of E. bieneusi: one (sub-population 1) contained all isolates of the anthroponotic ITS genotype A, whereas the other (sub-population 2) harbored isolates of multiple ITS genotypes with zoonotic potential. This was also supported by FST analysis. The measurement of LD and recombination rates indicated that sub-population 2 had a clonal population structure, whereas sub-population 1 had an epidemic population structure. The data confirmed the existence of genetic sub-populations in E. bieneusi that may be transmitted differently in humans.


Fitoterapia | 2014

Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma.

Ershun Zhou; Yunhe Fu; Zhengkai Wei; Yuqiang Yu; Xichen Zhang; Zhengtao Yang

Thymol, a naturally occurring monocyclic phenolic compound derived from Thymus vulgaris (Lamiaceae), has been reported to exhibit anti-inflammatory property in vivo and vitro. However, the mechanism of thymol is not clear. The aim of the present study was to investigate the effects of thymol on allergic inflammation in OVA-induced mice asthma and explore its mechanism. The model of mouse asthma was established by the induction of OVA. Thymol was orally administered at a dose of 4, 8, and 16 mg/kg body weight 1h before OVA challenge. At 24h after the last challenge, mice were sacrificed, and the data were collected by various experimental methods. The results revealed that pretreatment with thymol reduced the level of OVA-specific IgE, inhibited recruitment of inflammatory cells into airway, and decreased the levels of IL-4, IL-5, and IL-13 in BALF. Moreover, the pathologic changes of lung tissues were obviously ameliorated and goblet cell hyperplasia was effectively inhibited by the pretreatment of thymol. In addition, thymol reduced the development of airway hyperresponsiveness and blocked the activation of NF-κB pathway. All data suggested that thymol ameliorated airway inflammation in OVA-induced mouse asthma, possibly through inhibiting NF-κB activation. These findings indicated that thymol may be used as an alternative agent for treating allergic asthma.


Experimental Parasitology | 2012

Toxoplasma gondii: Protective immunity against toxoplasmosis with recombinant actin depolymerizing factor protein in BALB/c mice

Xiangsheng Huang; Jianhua Li; Guocai Zhang; Pengtao Gong; Ju Yang; Xichen Zhang

Toxoplasmosis is one of the most world-wide spread zoonosis representing a very serious clinical and veterinary problem. There is still need for vaccines for toxoplasmosis. In the present study, we evaluated the protective efficacy of a recombinant actin depolymerizing factor (ADF) subunit vaccine against Toxoplasma gondii infection in BALB/c mice. The recombinant T. gondii ADF protein (rADF) was expressed in Escherichia coli and used as antigens for BALB/c mice immunization. The results indicated that specific antibody and the increased percentage of CD4(+) T lymphocyte were found in vaccinated BALB/c mice with rADF, when compared with adjuvant or PBS groups. After challenged with T. gondii (RH strain) tachyzoites, the survival time of the mice in rADF group was longer than those in the control group. The numbers of brain cysts of the mice in rADF group reduced significantly when compared with those in control groups (P<0.05), and the rate of reduction could reach to around 30%. These results suggest that rADF can generate protective immunity against T. gondii infection in BALB/c mice.


Veterinary Parasitology | 2012

Toxoplasma gondii rhomboid protein 1 (TgROM1) is a potential vaccine candidate against toxoplasmosis

Jianhua Li; Qianzhong Han; Pengtao Gong; Tuo Yang; Baoyan Ren; Shijie Li; Xichen Zhang

Infection with the intracellular protozoan parasite Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. The rhomboid proteins which are responsible for adhesion and invasion of host cells have been suggested as vaccine candidates against toxoplasmosis. A DNA vaccine (pVAX-ROM1) encoding T. gondii rhomboid protein 1 (TgROM1) gene was constructed and the immune response and protective efficacy of this vaccine against lethal challenge in BALB/c mice were evaluated. The results indicated that specific antibody and lymphocyte proliferative responses were elicited in mice receiving pVAX-ROM1. The production levels of IFN-γ, IL-2, IL-4, and IL-10, as well as the percentage of CD4(+) cells in mice vaccinated with pVAX-ROM1 were significantly increased respectively, compared to controls receiving either pVAX1 alone or PBS. After lethal challenge, the mice immunized with pVAX-ROM1 showed an increased survival time compared with the mice in the controls. Our data suggested that a DNA vaccine pVAX-ROM1 encoding T. gondii rhomboid protein 1 triggered strong humoral and cellular responses, and prolonged survival time against T. gondii infection in BALB/c mice.


Parasitology Research | 2012

Efficacy of Eimeria tenella rhomboid-like protein as a subunit vaccine in protective immunity against homologous challenge

Jianhua Li; Jun Zheng; Pengtao Gong; Xichen Zhang

The immune responses and protective efficacy against homologous challenge in chickens elicited by recombinant proteins of a rhomboid-like gene (ETRHO1) from Eimeria tenella was investigated in the present study. When chickens were immunized with the recombinant rhomboid antigen, specific antibody was generated by ELISA assay. In comparison with the PBS group, the expression levels of interleukin-2, interferon-γ, as well as the percentages of CD4+ and CD8+ cells in the group immunized with the recombinant rhomboid proteins were significantly increased (p < 0.01, p < 0.05, and p < 0.05, respectively). These results suggest that rhomboid was capable of eliciting humoral and cell-mediated immunity response in birds. Challenge experiments demonstrated that the recombinant rhomboid protein could provide chickens with a protection rate around 77.3%. Numbers of oocysts and cecal lesion from chickens in the group immunized with recombinant rhomboid proteins decreased significantly, and the body weight increased significantly when compared with chickens in the PBS group (p < 0.05). These results suggested that the recombinant rhomboid antigen was able to impart partial protection against homologous challenge in chicken and could be a potential candidate for an E. tenella vaccine development.

Collaboration


Dive into the Xichen Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge