Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xifan Mei is active.

Publication


Featured researches published by Xifan Mei.


Scientific Reports | 2016

Preparation of Nickel Cobalt Sulfide Hollow Nanocolloids with Enhanced Electrochemical Property for Supercapacitors Application

Zhenhua Chen; Zhanghui Wan; Tiezhu Yang; Mengen Zhao; Xinyan Lv; Hao Wang; Xiuli Ren; Xifan Mei

Nanostructured functional materials with hollow interiors are considered to be good candidates for a variety of advanced applications. However, synthesis of uniform hollow nanocolloids with porous texture via wet chemistry method is still challenging. In this work, nickel cobalt precursors (NCP) in sub-micron sized spheres have been synthesized by a facile solvothermal method. The subsequent sulfurization process in hydrothermal system has changed the NCP to nickel cobalt sulfide (NCS) with porous texture. Importantly, the hollow interiors can be tuned through the sulfurization process by employing different dosage of sulfur source. The derived NCS products have been fabricated into supercapacitor electrodes and their electrochemical performances are measured and compared, where promising results were found for the next-generation high-performance electrochemical capacitors.


BioMed Research International | 2015

Neuroprotective Effect of Simvastatin via Inducing the Autophagy on Spinal Cord Injury in the Rat Model

Kai Gao; Guannan Wang; Yansong Wang; Donghe Han; Jing Bi; Yajiang Yuan; Tianchen Yao; Zhanghui Wan; Haihong Li; Xifan Mei

Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, is invariably used to treat cardiovascular diseases. Simvastatin has been recently demonstrated to have a neuroprotective effect in nervous system diseases. The present study aimed to further verify the neuroprotection and molecular mechanism of simvastatin on rats after spinal cord injury (SCI). The expression of Beclin-1 and LC3-B was evidently enhanced at postoperation days 3 and 5, respectively. However, the reduction of the mTOR protein and ribosomal protein S6 kinase p70 subtype (p70S6K) phosphorylation level occurred at the same time after SCI. Simvastatin significantly increased the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Meanwhile, immunofluorescence results indicated that the expression of chondroitin sulfate proteoglycan (CSPG) and caspase-3 protein was obviously reduced by simvastatin. Furthermore, Nissl staining and Basso, Beattie, and Bresnahan (BBB) scores showed that the quantity and function of motor neurons were visibly preserved by simvastatin after SCI. The findings of this study showed that simvastatin induced autophagy by inhibiting the mTOR signaling pathway and contributed to neuroprotection after SCI.


Journal of Neurochemistry | 2016

Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β‐catenin signaling pathway after spinal cord injury

Kai Gao; Zhaoliang Shen; Yajiang Yuan; Donghe Han; Changwei Song; Yue Guo; Xifan Mei

Statins exhibit neuroprotective effects after spinal cord injury (SCI). However, the molecular mechanism underlying these effects remains unknown. This study demonstrates that the hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin (Simv) exhibits neuroprotective effects on neuronal apoptosis and supports functional recovery in a rat SCI model by activating the Wnt/β‐catenin signaling pathway. In specific, Simv administration after SCI significantly up‐regulated the expression of low density lipoprotein receptor‐related protein 6 phosphorylation and β‐catenin protein, increased the mRNA expression of lymphoid enhancer factor‐1 and T‐cell factor‐1, and suppressed the expression of β‐catenin phosphorylation in the spinal cord neurons. Simv enhanced motor neuronal survival in the spinal cord anterior horn and decreased the lesion of spinal cord tissues after SCI. Simv administration after SCI also evidently reduced the expression levels of Bax, active caspase‐3, and active caspase‐9 in the spinal cord neurons and the proportion of transferase UTP nick end labeling (TUNEL)‐positive neuron cells, but increased the expression level of Bcl‐2 in the spinal cord neurons. However, the anti‐apoptotic effects of Simv were reduced in cultured spinal cord nerve cells when the Wnt/β‐catenin signaling pathway was suppressed in the lipopolysaccharide‐induced model. Furthermore, the Basso, Beattie, and Bresnahan scores indicated that Simv treatment significantly improved the locomotor functions of rats after SCI. This study is the first to report that Simv exerts neuroprotective effects by reducing neuronal apoptosis, and promoting functional and pathological recovery after SCI by activating the Wnt/β‐catenin signaling pathway.


Biochemical and Biophysical Research Communications | 2015

VEGF inhibits the inflammation in spinal cord injury through activation of autophagy

Hongyu Wang; Yansong Wang; Dingding Li; Zhiyuan Liu; Ziming Zhao; Donghe Han; Yajiang Yuan; Jing Bi; Xifan Mei

Vascular endothelial growth factor (VEGF) is a secreted mitogen associated with angiogenesis and re-vascularization of spinal cord injury (SCI). VEGF has long been thought to be a potent neurotrophic factor for the survival of spinal cord neuron. However, the neuroprotective mechanism of VEGF is still unclear. The aim of this study was to investigate the effect of VEGF on spinal cord injury and its mechanisms. Young male Wistar rats were subjected to SCI and then VEGF165 were injected directly into the lesion epicenter 24 h post injury. We detected Basso, Beattie and Bresnahan (BBB) scores and numbers of motor neuron via Nissl staining. The expressions of autophagy related protein Beclin1 and LC3B were determined by Western blot and RT-PCR. We also detected the contents of inflammation factors interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α) and interleukin-10(IL-10) in LPS (Lipopolysaccharide) treated spinal neuron-glia co-culture by ELISA. We found that VEGF165 administration increased the BBB score and reduced the loss of motor neuron of rats induced by SCI. VEGF decreased the protein expressions of IL-1β, TNF-α and IL-10 and up-regulated the expressions of Beclin1 and LC3B of rats. In the in vitro study, VEGF165 decreased the levels of IL-1β, IL-10 and TNF-a in the medium of LPS treated spinal neuron-glia co-culture, which was partially blocked by 3-MA, the inhibitor of autophagy. In addition, VEGF165 up-regulate the expressions of Beclin1 and LC3B in co-culture cells. The results suggested that VEGF165 attenuated the spinal cord injury by inhibiting the inflammation and increasing the autophagy function.


Biochemical and Biophysical Research Communications | 2016

Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury.

Chen Wang; Chang Liu; Kai Gao; Haosen Zhao; Zipeng Zhou; Zhaoliang Shen; Yue Guo; Zhuo Li; Tianchen Yao; Xifan Mei

Spinal cord injury (SCI) is one of the most serious nervous system disorders characterised by high morbidity and disability. Inflammatory and autophagy responses play an important role in the development of SCI. Metformin, a first-line drug for type-2 diabetes, features autophagy promotion as well as anti-inflammatory and anti-apoptotic properties in the nervous system. In this study, we investigated the neuroprotection effects of metformin preconditioning on rats after SCI. Results of Basso, Beattie and Bresnahan scores, HE staining and Nissl staining showed that the function and quantity of motor neurons were protected by metformin after SCI. Western blot revealed that the expression of Beclin-1 and LC3B-II was enhanced, and the phosphorylation levels of the mammalian target of rapamycin (mTOR) protein and p70S6K were reduced by metformin after SCI. Metformin significantly reduced the expression of NF-κB. Moreover, Western blot and immunofluorescence results indicated that caspase 3 activation was reduced, whereas bcl-2 level was significantly increased by metformin. Hence, metformin attenuated SCI by inhibiting apoptosis and inflammation and enhancing the autophagy via the mTOR/p70S6K signalling pathway.


Neural Regeneration Research | 2015

Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway

Kai Gao; Yansong Wang; Yajiang Yuan; Zhanghui Wan; Tianchen Yao; Haihong Li; Peifu Tang; Xifan Mei

The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guidance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord injury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, ca-spase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental findings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.


Materials Science and Engineering: C | 2016

In situ mineralization of anticancer drug into calcium carbonate monodisperse nanospheres and their pH-responsive release property

Tiezhu Yang; Zhanghui Wan; Zhiyuan Liu; Haihong Li; Hao Wang; Nan Lu; Zhenhua Chen; Xifan Mei; Xiuli Ren

In this paper, we facilitated the preparation of uniform calcium carbonate nanospheres and the encapsulation of anticancer drug (Doxorubicin, Dox) in one step by a facile bio-inspired mineralization method at room temperature. Hesperidin (Hesp), a natural originated flavanone glycoside, was introduced as crystallization modifier. The obtained Dox encapsulated CaCO3 nanospheres (Dox@CaCO3-Hesp NSs) having a narrow size range of ~200 nm. The drug loading/release studies reveal that these Dox@CaCO3-Hesp NSs have a drug loading efficiency (DLE) of 83% and drug loading content (DLC) of 14wt%. Besides, the release of Dox from Dox@CaCO3-Hesp NSs was pH depended. At pH=7.4, only a small amount (~28%) of Dox was released. While at pH=5.0, all amount of incorporated Dox was released. Confocal laser scanning microscopy (CLSM) image reveals the Dox@CaCO3-Hesp NSs can internalize the cells. These results suggest the Dox@CaCO3-Hesp NSs can be potentially used to utilize pH-responsive delivery of anticancer drugs.


Advances in Colloid and Interface Science | 2017

Fluorescence enhancement for noble metal nanoclusters

Dan Li; Zhenhua Chen; Xifan Mei

Noble metal nanoclusters have attracted great attentions in the area of fluorescence related applications due to their special properties such as low toxicity, excellent photostability and bio-compatibility. However, they still describe disadvantages for low quantum yield compared to quantum dots and organic dyes though the brightness of the fluorescence play an important role for the efficiency of the applications. Attentions have been attracted for exploring strategies to enhance the fluorescence based on the optical fundamentals through various protocols. Some methods have already been successfully proposed for obtaining relative highly fluorescent nanoclusters, which will potentially describe advantages for the application. In this review, we summarize the approach for enhancement of the fluorescence of the nanoclusters based on the modification of the properties, improvement of the synthesis process and optimization of the environment. The limitation and directions for future development of the fabrication of highly fluorescent metal nanoclusters are demonstrated.


Biochemical and Biophysical Research Communications | 2015

Protective effects of aerobic swimming training on high-fat diet induced nonalcoholic fatty liver disease: Regulation of lipid metabolism via PANDER-AKT pathway

Hao Wu; Meihua Jin; Donghe Han; Mingsheng Zhou; Xifan Mei; Youfei Guan; Chang Liu

This study aimed to investigate the mechanism by which aerobic swimming training prevents high-fat-diet-induced nonalcoholic fatty liver disease (NAFLD). Forty-two male C57BL/6 mice were randomized into normal-diet sedentary (ND; n = 8), ND exercised (n = 8), high-fat diet sedentary (HFD; n = 13), and HFD exercised groups (n = 13). After 2 weeks of training adaptation, the mice were subjected to an aerobic swimming protocol (60 min/day) 5 days/week for 10 weeks. The HFD group exhibited significantly higher mRNA levels of fatty acid transport-, lipogenesis-, and β-oxidation-associated gene expressions than the ND group. PANDER and FOXO1 expressions increased, whereas AKT expression decreased in the HFD group. The aerobic swimming program with the HFD reversed the effects of the HFD on the expressions of thrombospondin-1 receptor, liver fatty acid-binding protein, long-chain fatty-acid elongase-6, Fas cell surface death receptor, and stearoyl-coenzyme A desaturase-1, as well as PANDER, FOXO1, and AKT. In the HFD exercised group, PPARα and AOX expressions were much higher. Our findings suggest that aerobic swimming training can prevent NAFLD via the regulation of fatty acid transport-, lipogenesis-, and β-oxidation-associated genes. In addition, the benefits from aerobic swimming training were achieved partly through the PANDER-AKT-FOXO1 pathway.


Neural Regeneration Research | 2013

Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

Changwei Song; Shiqiang Fang; Gang Lv; Xifan Mei

Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allens method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

Collaboration


Dive into the Xifan Mei's collaboration.

Top Co-Authors

Avatar

Zhenhua Chen

Liaoning Medical University

View shared research outputs
Top Co-Authors

Avatar

Yansong Wang

Liaoning Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiuli Ren

Liaoning Medical University

View shared research outputs
Top Co-Authors

Avatar

Yajiang Yuan

Liaoning Medical University

View shared research outputs
Top Co-Authors

Avatar

Chang Liu

Liaoning Medical University

View shared research outputs
Top Co-Authors

Avatar

Kai Gao

Liaoning Medical University

View shared research outputs
Top Co-Authors

Avatar

Yue Guo

Liaoning Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhanghui Wan

Liaoning Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhaoliang Shen

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Donghe Han

Liaoning Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge