Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xifeng Wang is active.

Publication


Featured researches published by Xifeng Wang.


PLOS Pathogens | 2014

Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector.

Yan Huo; Wenwen Liu; Fujie Zhang; Xiaoying Chen; Li Li; Qifei Liu; Yijun Zhou; Taiyun Wei; Rongxiang Fang; Xifeng Wang

Most plant viruses are transmitted by hemipteroid insects. Some viruses can be transmitted from female parent to offspring usually through eggs, but the mechanism of this transovarial transmission remains unclear. Rice stripe virus (RSV), a Tenuivirus, transmitted mainly by the small brown planthopper (Laodelphax striatellus), is also spread to the offspring through the eggs. Here, we used the RSV–planthopper system as a model to investigate the mechanism of transovarial transmission and demonstrated the central role of vitellogenin (Vg) of L. striatellus in the process of virus transmission into the eggs. Our data showed Vg can bind to pc3 in vivo and in vitro and colocalize in the germarium. RSV filamentous ribonucleoprotein particles (RNPs) only accumulated in the terminal filaments and pedicel areas prior to Vg expression and was not present in the germarium until Vg was expressed, where RSV RNPs and Vg had colocalized. Observations by immunoelectron microscopy (IEM) also indicated that these two proteins colocalized in nurse cells. Knockdown of Vg expression due to RNA interference resulted in inhibition of the invasion of ovarioles by RSV. Together, the data obtained indicated that RSV RNPs may enter the nurse cell of the germarium via endocytosis through binding with Vg. Finally, the virus enters the oocytes through nutritive cords, using the same route as for Vg transport. Our results show that the Vg of L. striatellus played a critical role in transovarial transmission of RSV and shows how viruses can use existing transovarial transportation systems in insect vectors for their own purposes.


Molecular & Cellular Proteomics | 2015

Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein

Wenwen Liu; Stewart M. Gray; Yan Huo; Li Li; Taiyun Wei; Xifeng Wang

Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus–insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects.


Journal of Proteomics | 2014

Proteomic analysis of interaction between P7-1 of Southern rice black-streaked dwarf virus and the insect vector reveals diverse insect proteins involved in successful transmission

ThiThi Mar; Wenwen Liu; Xifeng Wang

UNLABELLED Southern rice black-streaked dwarf virus (SRBSDV), transmitted by the white-backed planthopper (Sogatella furcifera) in a persistent-propagative manner, has caused serious yield losses in Asia. Here in a yeast two-hybrid system, protein interactions between SRBSDV P7-1 as a bait protein and a cDNA library of S. furcifera as prey protein were assessed. Of 153 proteins identified as putative interactors, 24 were selected for further analysis. Of the 24 proteins, 18 were further confirmed in a chemiluminescent coimmunoprecipitation (Co-IP) assay as true positive interactors with different strengths of interactions. Six potential candidate proteins (neuroglian, myosin light chain 2 [MLC2], polyubiquitin, E3 ubiquitin ligase, ribophorin ii, and profilin) were analyzed for gene expression in five organs by qRT-PCR; mRNA levels were highest in the gut for neuroglian, MLC2, polyubiquitin and profilin, in the salivary glands for ribophorin ii, and in the haemolymph for E3 ubiquitin ligase. A virus-host protein interaction network was constructed using SRBSDV P7-1 and 18 prey positive protein homologs of Drosophila melanogaster. Our findings suggest that these proteins are involved in the complex host reaction to infection by SRBSDV and provide new insights into the molecular basis of transmission. BIOLOGICAL SIGNIFICANCE Southern rice black-streaked dwarf virus (SRBSDV), transmitted by S. furcifera in a persistent-propagative manner, is a new found virus and a tentative member of the genus Fijivirus in the family Reoviridae. It was widely noted by plant virologist, government officials and the farmers in Asia in recent years because of its epidemic outbreak and causing serious yield losses after 2009. However, the molecular mechanism by which SRBSDV successfully infects and replicates in both plant and insect hosts remains unclear, and much less is known about how the virus spreads from initially infected cells to adjacent cells in the insect vector. In the present study, we examined protein interactions between SRBSDV P7-1 as the bait and cDNA library of WBPH as the prey by using yeast two-hybrid system, 153 proteins were identified as putative interactors and 24 putative proteins were selected for chemiluminescent coimmunoprecipitation (Co-IP) assay, and then constructed a viral protein-host protein interaction network with homologs of D. melanogaster. Six WBPH proteins were confirmed as potential P7-1 partners that take part in a pivotal role for viral movement in insect vector. These findings will greatly facilitate the understanding of the transmission mechanisms of SRBSDV by its insect vector. This is the first to study the molecular interaction between SRBSDV and its insect vector.


Virology Journal | 2013

Simultaneous detection and differentiation of Rice black streaked dwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV) by duplex real time RT-PCR

Peng Zhang; Thi Thi Mar; Wenwen Liu; Li Li; Xifeng Wang

BackgroundThe diseases caused by Rice black streaked dwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV) have been occurring epidemically in China and southeastern Asia in recent years. A sensitive, reliable and quantitative method is required to detect and distinguish for RBSDV and SRBSDV in rice and vector insects.ResultsWe developed a sensitive and lineage-specific duplex real time RT-qPCR for detection of RBSDV and SRBSDV in a single or/and double infection in rice samples. The duplex RT-qPCR was optimized using standard samples transcribed by T7 Large Scale RNA Production System in vitro. We developed a reliable system for duplex RT-qPCR, in which its co-efficiency of RBSDV and SRBSDV, were 91.6% and 90.7%, respectively. The coefficient of determination was more than 0.990; the slope of linear equation was −3.542, and −3.567, respectively. Out of 30 samples collected in North and Central China, which were suspected to be infected with these two viruses, 10 samples were detected RBSDV positive by RT-PCR and 12 samples by RT-qPCR. No mixed infections were found. Simultaneously, out of total 60 samples collected from Southern China, which were also suspected to be infected with these two viruses, 41 samples were determined SRBSDV positive by RT-PCR and 47 samples by RT-qPCR. Also in this case no mixed infections were found. The rice genes eEF-1a and UBQ5 were selected as internal controls for quantification assay also performed as good expression stability.ConclusionThe duplex RT-qPCR assay provided as a sufficiently sensitive, specific, accurate, reproducible and rapid tool for the detection and differentiation of RBSDV and SRBSDV. The RT-qPCR assay can be used in routine diagnostic of these two viruses in order to study the disease epidemiology in rice crops.


Scientific Reports | 2015

Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi

Hui Wang; Keke Wu; Yan Liu; Yunfeng Wu; Xifeng Wang

Barley yellow dwarf virus-GPV (BYDV-GPV) is transmitted by Rhopalosiphum padi and Schizaphis graminum in a persistent nonpropagative manner. To improve our understanding of its transmission mechanism by aphid vectors, we used two approaches, isobaric tags for relative and absolute quantitation (iTRAQ) and yeast two-hybrid (YTH) system, to identify proteins in R. padi that may interact with or direct the spread of BYDV-GPV along the circulative transmission pathway. Thirty-three differential aphid proteins in viruliferous and nonviruliferous insects were identified using iTRAQ coupled to 2DLC-MS/MS. With the yeast two-hybrid system, 25 prey proteins were identified as interacting with the readthrough protein (RTP) and eight with the coat protein (CP), which are encoded by BYDV-GPV. Among the aphid proteins identified, most were involved in primary energy metabolism, synaptic vesicle cycle, the proteasome pathway and the cell cytoskeleton organization pathway. In a systematic comparison of the two methods, we found that the information generated by the two methods was complementary. Taken together, our findings provide useful information on the interactions between BYDV-GPV and its vector R. padi to further our understanding of the mechanisms regulating circulative transmission in aphid vectors.


Phytopathology | 2014

Localization and Distribution of Wheat dwarf virus in Its Vector Leafhopper, Psammotettix alienus

Yajiao Wang; Qianzhuo Mao; Wenwen Liu; ThiThi Mar; Taiyun Wei; Yan Liu; Xifeng Wang

Numerous virus pathogens are transmitted by specific arthropod vectors. Understanding the mechanism of transmission is a critical step in the epidemiology of plant viruses and is crucial for the development of effective disease control strategies. In this study, we describe the localization and distribution of Wheat dwarf virus (WDV), an economically important and widespread single-stranded DNA virus, in its leafhopper vector, Psammotettix alienus. The results suggest that WDV not only can move to the salivary glands from the anterior and middle midgut via the hemocoel but also can pass directly through the sheath of the filter chamber and be readily transmitted to healthy wheat plants within 5 min of an acquisition access period on infected plants. When a bacterial-expressed recombinant capsid protein (CP) was incubated with the internal organs of leafhoppers, CP-immunoreactive antigens were found at the anterior and middle midgut. Furthermore, when leafhoppers were fed with an antiserum raised against the CP, the accumulation of WDV in the gut cells, hemocoel, and salivary glands was significantly reduced. These data provide evidence that transmission of WDV is determined by a CP-mediated virion-vector retention mechanism.


Virology Journal | 2013

A one step real-time RT-PCR assay for the quantitation of Wheat yellow mosaic virus(WYMV)

Wenwen Liu; Xiaojuan Zhao; Peng Zhang; Thi Thi Mar; Yan Liu; Zong-Ying Zhang; Chenggui Han; Xifeng Wang

BackgroundWheat yellow mosaic virus (WYMV) is an important pathogen in China and other countries. It is the member of the genus Bymovirus and transmitted primarily by Polymyxa graminis. The incidence of wheat infections in endemic areas has risen in recent years. Prompt and dependable identification of WYMV is a critical component of response to suspect cases.MethodsIn this study, a one step real-time RT-PCR, followed by standard curve analysis for the detection and identification of WYMV, was developed. Two reference genes, 18s RNA and β-actin were selected in order to adjust the veracity of the real-time RT-PCR assay.ResultsWe developed a one-step Taqman-based real-time quantitative RT-PCR (RT-qPCR) assay targeting the conserved region of the 879 bp long full-length WYMV coat protein gene. The accuracy of normalized data was analyzed along with appropriate internal control genes: β-actin and 18s rRNA which were included in detecting of WYMV-infected wheat leaf tissues. The detectable end point sensitivity in RT-qPCR assay was reaching the minimum limit of the quantitative assay and the measurable copy numbers were about 30 at106-fold dilution of total RNA. This value was close to 104-fold more sensitive than that of indirect enzyme-linked immunosorbent assay. More positive samples were detected by RT-qPCR assay than gel-based RT-PCR when detecting the suspected samples collected from 8 regions of China. Based on presented results, RT-qPCR will provide a valuable method for the quantitative detection of WYMV.ConclusionsThe Taqman-based RT-qPCR assay is a faster, simpler, more sensitive and less expensive procedure for detection and quantification of WYMV than other currently used methods.


Frontiers in Microbiology | 2017

Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease

Peipei Zhang; Yan Liu; Wenwen Liu; Mengji Cao; Sébastien Massart; Xifeng Wang

To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.


Frontiers in Microbiology | 2017

Two Negative-Strand RNA Viruses Identified in Watermelon Represent a Novel Clade in the Order Bunyavirales

Min Xin; Mengji Cao; Wenwen Liu; Yingdang Ren; Xueping Zhou; Xifeng Wang

Two novel negative-sense, single-stranded (ss) RNA viruses were identified in watermelon plants and named watermelon crinkle leaf-associated virus 1 and 2 (WCLaV-1 and -2), respectively. The multipartite genomes consist of three RNA molecules of ~6.8, 1.4, and 1.3 kb. The genomes and the deduced proteins of RNA1 and RNA3 show features resembling those of members in the genus Phlebovirus and Tenuivirus; however, the predicted proteins encoded by RNA2 are related to the movement protein (MP) in the genus Ophiovirus and Emaravirus. Furthermore, these two viruses define a novel clade in the family Phenuiviridae, order Bunyavirales, which is phylogenetically related to the viruses in the above four genera. Moreover, after mechanical inoculation with WCLaV-1 seedlings of the natural host watermelon plants develop crinkling similar to those observed in the field. These findings enhance our understanding of the evolution and the classification of ssRNA viruses.


PLOS ONE | 2014

Sequencing and Validation of Reference Genes to Analyze Endogenous Gene Expression and Quantify Yellow Dwarf Viruses Using RT-qPCR in Viruliferous Rhopalosiphum padi

Keke Wu; Wenwen Liu; ThiThi Mar; Yan Liu; Yunfeng Wu; Xifeng Wang

The bird cherry-oat aphid (Rhopalosiphum padi), an important pest of cereal crops, not only directly sucks sap from plants, but also transmits a number of plant viruses, collectively the yellow dwarf viruses (YDVs). For quantifying changes in gene expression in vector aphids, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a touchstone method, but the selection and validation of housekeeping genes (HKGs) as reference genes to normalize the expression level of endogenous genes of the vector and for exogenous genes of the virus in the aphids is critical to obtaining valid results. Such an assessment has not been done, however, for R. padi and YDVs. Here, we tested three algorithms (GeNorm, NormFinder and BestKeeper) to assess the suitability of candidate reference genes (EF-1α, ACT1, GAPDH, 18S rRNA) in 6 combinations of YDV and vector aphid morph. EF-1α and ACT1 together or in combination with GAPDH or with GAPDH and 18S rRNA could confidently be used to normalize virus titre and expression levels of endogenous genes in winged or wingless R. padi infected with Barley yellow dwarf virus isolates (BYDV)-PAV and BYDV-GAV. The use of only one reference gene, whether the most stably expressed (EF-1α) or the least stably expressed (18S rRNA), was not adequate for obtaining valid relative expression data from the RT-qPCR. Because of discrepancies among values for changes in relative expression obtained using 3 regions of the same gene, different regions of an endogenous aphid gene, including each terminus and the middle, should be analyzed at the same time with RT-qPCR. Our results highlight the necessity of choosing the best reference genes to obtain valid experimental data and provide several HKGs for relative quantification of virus titre in YDV-viruliferous aphids.

Collaboration


Dive into the Xifeng Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taiyun Wei

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Huo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Rong

University of Liège

View shared research outputs
Top Co-Authors

Avatar

Chenggui Han

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fujie Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qifei Liu

Fujian Agriculture and Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge