Xifeng Yang
Changshu Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xifeng Yang.
Journal of Applied Physics | 2011
Yushen Liu; Feng Chi; Xifeng Yang; Jin-Fu Feng
We propose a pure thermoelectric spin generator based on a Rashba quantum dot molecular junction by using the temperature difference instead of the usual voltage bias difference. A magnetic flux penetrating through the device is also considered. The spin Seebeck coefficient SS and the spin figure of merit ZST of the molecular junction are calculated in terms of the Green’s function formalism and the equation of motion (EOM) technique. It is found that a pure spin-up (spin-down) Seebeck coefficient can be generated by the coaction of the magnetic flux and the Rashba spin-orbit (RSO) interaction.
Journal of Applied Physics | 2010
Yushen Liu; Xifeng Yang
We propose a high-efficiency molecular junction consisting of a double-coupled-quantum-dot molecule sandwiched between two metallic electrodes. ZT can be enhanced in the Fano-line-shape regime, and it is sensitive to the magnetic flux threading through the double-coupled-quantum-dot molecular junction. This is mainly due to the local density of states in the Fano-line-shape regime may become narrower, and an abrupt changing in the conductance (transmission) spectrum is developed. We find the value of ZT can exceed 1 at room temperature by controlling the chemical potential or magnetic flux. So our results indicate such a molecular junction may be used to the solid-state thermoelectric energy-conversion device at room temperature.
Journal of Applied Physics | 2014
Xifeng Yang; Yushen Liu; J. F. Feng; Xiangxue Wang; Chang-wen Zhang; F. Chi
Ab initio calculations are performed to investigate the spin-polarized transport properties of the bare and hydrogenated zigzag silicene nanoribbons (ZSiNRs). The results show that the ZSiNRs with symmetric (asymmetric) edges prefer the ferromagnetic (antiferromagnetic) as their ground states with the semiconductor properties, while the accordingly antiferromagnetic (ferromagnetic) states exhibit the metallic behaviors. These facts result in a giant magnetoresistance behavior between the ferromagnetic and antiferromagnetic states in the low bias-voltage regime. Moreover, in the ferromagnetic ZSiNRs with asymmetric edges, a perfect spin-filtering effect with 100% positive electric current polarization can be achieved by altering the bias voltage. In addition, we also find that the negative differential resistances prefer the metastable states. The findings here indicate that the asymmetric and symmetric ZSiNRs are promising materials for spintronic applications.
Journal of Chemical Physics | 2015
Xifeng Yang; Wen-Qian Zhou; X. K. Hong; Yushen Liu; Xue-Feng Wang; Jinfu Feng
Ab initio calculations combining density-functional theory and nonequilibrium Greens function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the high bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.
Physical Chemistry Chemical Physics | 2014
Xifeng Yang; Yushen Liu; X. Zhang; L. P. Zhou; Xiangxue Wang; F. Chi; J. F. Feng
We present ab initio studies of spin-polarized transport properties and thermospin effects in cyclopentadienyl-iron molecular junctions. It is found that the spin-up transmission coefficient at the Fermi level shows an odd-even oscillating behaviour, while the spin-down transmission coefficient has an exponential decay with the molecule length. The spin polarization at the Fermi level rapidly tends toward a saturation value close to 100% with the molecule length. This is ascribed to the existence of different orbital states for different spin components at the Fermi level. In addition, we find that the spin-up Seebeck coefficient oscillates between positive and negative values, while the spin-down Seebeck coefficient always has a positive value and monotonically increases with the molecule length. Therefore in some cases, the spin Seebeck coefficient is even larger than the corresponding charge Seebeck effect. Finally, we also provide a possibility of utilizing cyclopentadienyl-iron molecular junctions to achieve the pure spin current without an accompanying charge current at about room temperature.
Applied Physics Letters | 2012
Ying Liu; Xifeng Yang; Feng Chi; M. S. Si; Yong Guo
We propose a pure-spin-current generator based on a single level quantum dot (QD) device subjected to time-dependent magnetic fields. Under low temperature and high magnetic fields, the spin-dependent Seebeck coefficient in the transition regime is rapidly enhanced by several orders of magnitude larger than that in the steady regime. This fact is attributed to a delay effect of the electron transmission probability with respect to the split of the QD energy level. When a temperature gradient is applied across the device, the pure spin current emerges. The findings here suggest a feasible way of enhancing thermospin effects and generating the pure spin current by time-dependent external fields.
Nanotechnology | 2011
Yushen Liu; Debao Zhang; Xifeng Yang; J. F. Feng
We investigate the thermoelectric effects of an Aharonov-Bohm (AB) interferometer with a quantum dot (QD) embedded in each of its arms, where the intra-dot Coulomb interaction between electrons in each QD is taken into account. Using Greens function methods and the equation of motion (EOM) technique, we find that the Seebeck coefficient and Lorenz number can be strongly enhanced when the chemical potential sweeps the molecular states associated with the Fano line-shapes in the transmission spectra, due to quantum interference effects between the bonding and antibonding molecular states. It is found that enhancement of the thermoelectric effects occurs between the two groups of conductance peaks in the presence of strong intra-dot Coulomb interaction-the reason being that a transmission node is developed in the Coulomb blockade regime. In this case, the maximum value of the Lorenz number approaches 10π(2)k(B)(2)/(3e(2)). Its thermoelectric conversion efficiency in the absence of phonon thermal conductance, described by the figure of merit ZT, approaches 2 at room temperature. Therefore, it may be used as a high-efficiency solid-state thermoelectric conversion device under certain circumstances.
Nanoscale Research Letters | 2011
Yushen Liu; X. K. Hong; Jinfu Feng; Xifeng Yang
We examine the relation between the phase-coherent processes and spin-dependent thermoelectric effects in an Aharonov-Bohm (AB) interferometer with a Rashba quantum dot (QD) in each of its arm by using the Greens function formalism and equation of motion (EOM) technique. Due to the interplay between quantum destructive interference and Rashba spin-orbit interaction (RSOI) in each QD, an asymmetrical transmission node splits into two spin-dependent asymmetrical transmission nodes in the transmission spectrum and, as a consequence, results in the enhancement of the spin-dependent thermoelectric effects near the spin-dependent asymmetrical transmission nodes. We also examine the evolution of spin-dependent thermoelectric effects from a symmetrical parallel geometry to a configuration in series. It is found that the spin-dependent thermoelectric effects can be enhanced by controlling the dot-electrode coupling strength. The simple analytical expressions are also derived to support our numerical results.PACS numbers: 73.63.Kv; 71.70.Ej; 72.20.Pa
AIP Advances | 2014
Xifeng Yang; Yushen Liu; J. F. Feng; Xue-Feng Wang
Using the first-principles methods, we investigate the thermospin properties of a two-probe model based on zigzag-edge silicene nanoribbons (ZSiNRs). Compared with the odd-width ZSiNRs, the spin Seebeck coefficient of the even-width ZSiNRs is obviously enhanced at room temperature. This fact is attributed to a nearly perfect symmetry of the linear conductance gap with the different spin index with respect to the Fermi level induced by the different parity of the wave functions. More interestingly, the corresponding charge Seebeck coefficient is near zero. Therefore, when a thermal bias is presented in the even-width ZSiNRs, a nearly pure spin current is achieved. Meanwhile, the spin polarization of the current approaches infinite.
Applied Physics Letters | 2013
Ying Liu; Xifeng Yang; X. K. Hong; M. S. Si; Feng Chi; Yong Guo
High-efficiency heat engine requires a large output power at the cost of less input heat energy as possible. Here we propose a heat engine composed of serially connected two quantum dots sandwiched between two metallic electrodes. The efficiency of the heat engine can approach the maximum allowable Carnot efficiency ηC. We also find that the strong intradot Coulomb interaction can induce additional work regions for the heat engine, whereas the interdot Coulomb interaction always suppresses the efficiency. Our results presented here indicate a way to fabricate high-efficiency quantum-dot thermoelectric devices.