Xihui Shen
Northwest A&F University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xihui Shen.
Applied and Environmental Microbiology | 2005
Xihui Shen; Cheng-Ying Jiang; Yan Huang; Zhi-Pei Liu; Shuang-Jiang Liu
ABSTRACT Corynebacterium glutamicum used gentisate and 3-hydroxybenzoate as its sole carbon and energy source for growth. By genome-wide data mining, a gene cluster designated ncg12918-ncg12923 was proposed to encode putative proteins involved in gentisate/3-hydroxybenzoate pathway. Genes encoding gentisate 1,2-dioxygenase (ncg12920) and fumarylpyruvate hydrolase (ncg12919) were identified by cloning and expression of each gene in Escherichia coli. The gene of ncg12918 encoding a hypothetical protein (Ncg12918) was proved to be essential for gentisate-3-hydroxybenzoate assimilation. Mutant strain RES167Δncg12918 lost the ability to grow on gentisate or 3-hydroxybenzoate, but this ability could be restored in C. glutamicum upon the complementation with pXMJ19-ncg12918. Cloning and expression of this ncg12918 gene in E. coli showed that Ncg12918 is a glutathione-independent maleylpyruvate isomerase. Upstream of ncg12920, the genes ncg12921-ncg12923 were located, which were essential for gentisate and/or 3-hydroxybenzoate catabolism. The Ncg12921 was able to up-regulate gentisate 1,2-dioxygenase, maleylpyruvate isomerase, and fumarylpyruvate hydrolase activities. The genes ncg12922 and ncg12923 were deduced to encode a gentisate transporter protein and a 3-hydroxybenzoate hydroxylase, respectively, and were essential for gentisate or 3-hydroxybenzoate assimilation. Based on the results obtained in this study, a GSH-independent gentisate pathway was proposed, and genes involved in this pathway were identified.
Journal of Biological Chemistry | 2006
Jie Feng; Yongsheng Che; Johanna Milse; Ya-Jie Yin; Lei Liu; Christian Rückert; Xihui Shen; Su-Wei Qi; Jörn Kalinowski; Shuang-Jiang Liu
Data mining of the Corynebacterium glutamicum genome identified 4 genes analogous to the mshA, mshB, mshC, and mshD genes that are involved in biosynthesis of mycothiol in Mycobacterium tuberculosis and Mycobacterium smegmatis. Individual deletion of these genes was carried out in this study. Mutants mshC– and mshD– lost the ability to produce mycothiol, but mutant mshB– produced mycothiol as the wild type did. The phenotypes of mutants mshC– and mshD– were the same as the wild type when grown in LB or BHIS media, but mutants mshC– and mshD– were not able to grow in mineral medium with gentisate or 3-hydroxybenzoate as carbon sources. C. glutamicum assimilated gentisate and 3-hydroxybenzoate via a glutathione-independent gentisate pathway. In this study it was found that the maleylpyruvate isomerase, which catalyzes the conversion of maleylpyruvate into fumarylpyruvate in the glutathione-independent gentisate pathway, needed mycothiol as a cofactor. This mycothiol-dependent maleylpyruvate isomerase gene (ncgl2918) was cloned, actively expressed, and purified from Escherichia coli. The purified mycothiol-dependent isomerase is a monomer of 34 kDa. The apparent Km and Vmax values for maleylpyruvate were determined to be 148.4 ± 11.9 μm and 1520 ± 57.4 μmol/min/mg, respectively (mycothiol concentration, 2.5 μm). Previous studies had shown that mycothiol played roles in detoxification of oxidative chemicals and antibiotics in streptomycetes and mycobacteria. To our knowledge, this is the first demonstration that mycothiol is essential for growth of C. glutamicum with gentisate or 3-hydroxybenzoate as carbon sources and the first characterization of a mycothiol-dependent maleylpyruvate isomerase.
Applied and Environmental Microbiology | 2006
Yan Huang; Ke-Xin Zhao; Xihui Shen; Muhammad Tausif Chaudhry; Cheng-Ying Jiang; Shuang-Jiang Liu
ABSTRACT Corynebacterium glutamicum grew on resorcinol as a sole source of carbon and energy. By genome-wide data mining, two gene clusters, designated NCgl1110-NCgl1113 and NCgl2950-NCgl2953, were proposed to encode putative proteins involved in resorcinol catabolism. Deletion of the NCgl2950-NCgl2953 gene cluster did not result in any observable phenotype changes. Disruption and complementation of each gene at NCgl1110-NCgl1113, NCgl2951, and NCgl2952 indicated that these genes were involved in resorcinol degradation. Expression of NCgl1112, NCgl1113, and NCgl2951 in Escherichia coli revealed that NCgl1113 and NCgl2951 both coded for hydroxyquinol 1,2-dioxygenases and NCgl1112 coded for maleylacetate reductases. NCgl1111 encoded a putative monooxygenase, but this putative hydroxylase was very different from previously functionally identified hydroxylases. Cloning and expression of NCgl1111 in E. coli revealed that NCgl1111 encoded a resorcinol hydroxylase that needs NADPH as a cofactor. E. coli cells containing Ncgl1111 and Ncgl1113 sequentially converted resorcinol into maleylacetate. NCgl1110 and NCgl2950 both encoded putative TetR family repressors, but only NCgl1110 was transcribed and functional. NCgl2953 encoded a putative transporter, but disruption of this gene did not affect resorcinol degradation by C. glutamicum. The function of NCgl2953 remains unclear.
Applied Microbiology and Biotechnology | 2012
Xihui Shen; Ning-Yi Zhou; Shuang-Jiang Liu
With the implementation of the well-established molecular tools and systems biology techniques, new knowledge on aromatic degradation and assimilation by Corynebacterium glutamicum has been emerging. This review summarizes recent findings on degradation of aromatic compounds by C. glutamicum. Among these findings, the mycothiol-dependent gentisate pathway was firstly discovered in C. glutamicum. Other important knowledge derived from C. glutamicum would be the discovery of linkages among aromatic degradation and primary metabolisms such as gluconeogenesis and central carbon metabolism. Various transporters in C. glutamicum have also been identified, and they play an essential role in microbial assimilation of aromatic compounds. Regulation on aromatic degradation occurs mainly at transcription level via pathway-specific regulators, but global regulator(s) is presumably involved in the regulation. It is concluded that C. glutamicum is a very useful model organism to disclose new knowledge of biochemistry, physiology, and genetics of the catabolism of aromatic compounds in high GC content Gram-positive bacteria, and that the new physiological properties of aromatic degradation and assimilation are potentially important for industrial applications of C. glutamicum.
Environmental Microbiology | 2013
Weipeng Zhang; Yao Wang; Yunhong Song; Tietao Wang; Shengjuan Xu; Zhong Peng; Xiaoli Lin; Lei Zhang; Xihui Shen
Type VI secretion systems (T6SSs) which widely distributed in Gram-negative bacteria have been primarily studied in the context of cell interactions with eukaryotic hosts or other bacteria. We have recently identified a thermoregulated T6SS4 in the enteric pathogen Yersinia pseudotuberculosis. Here we report that OmpR directly binds to the promoter of T6SS4 operon and regulates its expression. Further, we observed that the OmpR-regulated T6SS4 is essential for bacterial survival under acidic conditions and that its expression is induced by low pH. Moreover, we showed that T6SS4 plays a role in pumping H(+) out of the cell to maintain intracellular pH homeostasis. The acid tolerance phenotype of T6SS4 is dependent on the ATPase activity of ClpV4, one of the components of T6SS4. These results not only uncover a novel strategy utilized by Y. pseudotuberculosis for acid resistance, but also reveal that T6SS, a bacteria secretion system known to be functional in protein transportation has an unexpected function in H(+) extrusion under acid conditions.
PLOS Pathogens | 2015
Tietao Wang; Meiru Si; Yunhong Song; Wenhan Zhu; Fen Gao; Yao Wang; Lei Zhang; Weipeng Zhang; Gehong Wei; Zhao-Qing Luo; Xihui Shen
Type VI secretion systems (T6SSs) are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549), which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments.
International Journal of Systematic and Evolutionary Microbiology | 2013
Lei Zhang; Yang Wang; Linfang Wei; Yao Wang; Xihui Shen; Shiqing Li
A light-yellow-coloured bacterium, designated strain PTJT-5(T), was isolated from the stem of Smilacina japonica A. Gray collected from Taibai Mountain in Shaanxi Province, north-west China, and was subjected to a taxonomic study by using a polyphasic approach. The novel isolate grew optimally at 25-28 °C and pH 6.0-7.0. Flexirubin-type pigments were produced. Cells were Gram-reaction-negative, strictly aerobic, rod-shaped and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PTJT-5(T) was a member of the phylum Bacteroidetes, exhibiting the highest sequence similarity to Lacibacter cauensis NJ-8(T) (87.7 %). The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 and iso-C17 : 0 3-OH. The only polyamine was homospermidine and the major polar lipid was phosphatidylethanolamine. The only respiratory quinone was MK-7 and the DNA G+C content was 40.3 mol%. Based on the phenotypic, phylogenetic and genotypic data, strain PTJT-5(T) is considered to represent a novel species of a new genus in the family Chitinophagaceae, for which the name Taibaiella smilacinae gen. nov., sp. nov. is proposed. The type strain of Taibaiella smilacinae is PTJT-5(T) ( = CCTCC AB 2013017(T) = KCTC 32316(T)). An emended description of Flavihumibacter petaseus is also proposed.
Archives of Microbiology | 2011
Weipeng Zhang; Shengjuan Xu; Jing Li; Xihui Shen; Yao Wang; Zhiming Yuan
The type VI secretion system (T6SS) is a novel secretion system found in many Gram-negative bacterial pathogens, which appears to be tightly regulated by different regulatory mechanisms. In the present study, we identified 4 T6SS clusters in Yersinia pseudotuberculosis and demonstrated that they were differentially thermoregulated. Among them, T6SS4 was preferentially expressed at 26°C, and its expression was growth phase dependent and subject to quorum sensing regulation. Both YpsI and YtbI AHL synthases contributed to the positive regulation of T6SS4, whereas YpsI synthase played the major role as T6SS4 expression was reduced strongly in the ypsI mutant strain but weakly in the ytbI mutant strain. Moreover, we provided evidence that exogenous addition of different synthetic AHLs complemented T6SS4 expression in different efficiencies in an ypsIytbI double mutant strain, suggesting C6-HSL had an antagonistic effect on T6SS4 expression. This is the first study demonstrating that the expression of T6SS is precisely regulated by temperature, growth phase, and AHL-dependent quorum sensing systems in Y. pseudotuberculosis.
Nature Communications | 2017
Jinshui Lin; Weipeng Zhang; Juanli Cheng; Xu Yang; Kaixiang Zhu; Yao Wang; Gehong Wei; Pei-Yuan Qian; Zhao-Qing Luo; Xihui Shen
Iron sequestration by host proteins contributes to the defence against bacterial pathogens, which need iron for their metabolism and virulence. A Pseudomonas aeruginosa mutant lacking all three known iron acquisition systems retains the ability to grow in media containing iron chelators, suggesting the presence of additional pathways involved in iron uptake. Here we screen P. aeruginosa mutants defective in growth in iron-depleted media and find that gene PA2374, proximal to the type VI secretion system H3 (H3-T6SS), functions synergistically with known iron acquisition systems. PA2374 (which we have renamed TseF) appears to be secreted by H3-T6SS and is incorporated into outer membrane vesicles (OMVs) by directly interacting with the iron-binding Pseudomonas quinolone signal (PQS), a cell–cell signalling compound. TseF facilitates the delivery of OMV-associated iron to bacterial cells by engaging the Fe(III)-pyochelin receptor FptA and the porin OprF. Our results reveal links between type VI secretion, cell–cell signalling and classic siderophore receptors for iron acquisition in P. aeruginosa.
Applied Microbiology and Biotechnology | 2008
Yan Huang; Ke-xin Zhao; Xihui Shen; Chen-Ying Jiang; Shuang-Jiang Liu
Corynebacterium glutamicum uses 4-hydroxybenzoic acid (4HBA) as sole carbon source for growth. Previous studies showed that 4HBA was taken up into cells via PcaK, and the aromatic ring was cleaved via protocatechuate 3,4-dioxygenase. In this study, the gene pobACg (ncgl1032) involved in the conversion of 4HBA into 3,4-dihydroxybenzoate (protocatechuate) was identified, and the gene product PobACg was characterized as a 4HBA 3-hydroxylase, which is a homodimer of PobACg. The pobACg is physically associated with pcaK and formed a putative operon, but the two genes were located distantly to the pca cluster, which encode other enzymes for 4HBA/protocatechuate degradation. This new 4HBA 3-hydroxylase is unique in that it prefers NADPH to NADH as a cosubstrate, although its sequence is similar to other 4HBA 3-hydroxylases that prefer NADH as a cosubstrate. Sited-directed mutagenesis on putative NADPH-binding sites, D38 and T42, further improved its affinity to NADPH as well as its catalytic efficiency.