Xijun Chang
Lanzhou University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xijun Chang.
Journal of Hazardous Materials | 2009
Zhipeng Zang; Zheng Hu; Zhenhua Li; Qun He; Xijun Chang
A new method that utilizes ethylenediamine-modified multiwalled carbon nanotubes as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry. Identification of the surface modification was characterized and performed on the basis of transmission electron microscopy, Fourier transform infrared spectra and elemental analysis. The separation/preconcentration conditions of analytes were investigated, including the pH value, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 39.58, 28.69 and 54.48 mg g(-1) for Cr(III), Fe(III) and Pb(II), respectively. The detection limits of the method were under 0.35 ng mL(-1) and the relative standard deviations were lower than 3.5% (n=11). The method was validated using a certified reference material, and has been applied for the determination of trace Cr(III), Fe(III) and Pb(II) in biological and natural water samples with satisfactory results.
Talanta | 2004
Yong Guo; Bingjun Din; Yongwen Liu; Xijun Chang; Shuangming Meng; Jianhong Liu
2-Aminoacetylthiophenol (AATP)-modified Amberlite XAD-2 has been synthesized by coupling it through NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis (TGA) and infrared (IR) spectra, was used to preconcentrate Cd, Hg, Ag, Ni, Co, Cu and Zn ions. Several parameters, such as distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and striping, volume of sample and eluent, were evaluated. The effects of electrolytes and cations on the preconcentration were also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard reference sediment material (GBW 07309 China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ag, Ni, Co, Cu and Zn in tap water, river water and sediment samples by inductively coupled plasma-atomic emission spectrometry (ICP-AES) with satisfactory results. The 3sigma detection limits for Cd, Hg, Ag, Ni, Co, Cu and Zn were found to be 0.10, 0.23, 0.41, 0.13, 0.25, 0.39 and 0.58mugl(-1), respectively. The relative standard deviation of the determination was <10%.
Talanta | 2007
Xijun Chang; Na Jiang; Hong Zheng; Qun He; Zheng Hu; Yunhui Zhai; Yuemei Cui
A new Fe(III)-imprinted amino-functionalized silica gel sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Fe(III) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher selectivity and adsorption capacity for Fe(III). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Fe(III) was 25.21 and 5.10mg g(-1), respectively. The largest selectivity coefficient of the Fe(III)-imprinted sorbent for Fe(III) in the presence of Cr(III) was over 450. The relatively selective factor (alpha(r)) values of Fe(III)/Cr(III) were 49.9 and 42.4, which were greater than 1. The distribution ratio (D) values of Fe(III)-imprinted polymers for Fe(III) were greatly larger than that for Cr(III). The detection limit (3sigma) was 0.34microg L(-1). The relative standard deviation of the method was 1.50% for eight replicate determinations. The method was validated by analyzing two certified reference materials (GBW 08301 and GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace iron in plants and water samples with satisfactory results.
Analytica Chimica Acta | 2009
Zhenhua Li; Xijun Chang; Xiaojun Zou; Xiangbing Zhu; Rong Nie; Zheng Hu; Ruijun Li
A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.
Journal of Hazardous Materials | 2009
Ru Gao; Zheng Hu; Xijun Chang; Qun He; Lijun Zhang; Zhifeng Tu; Jianping Shi
A new sorbent 1-acylthiosemicarbazide-modified activated carbon (AC-ATSC) was prepared as a solid-phase extractant and applied for removing of trace Cu(II), Hg(II) and Pb(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 3, the maximum static adsorption capacity of Cu(II), Hg(II) and Pb(II) onto the AC-ATSC were 78.20, 67.80 and 48.56 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 3.0 mL of 2% CS(NH2)2 and 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3sigma) of this method for Cu(II), Hg(II) and Pb(II) were 0.20, 0.12 and 0.45 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=8). The prepared sorbent was applied for the preconcentration of trace Cu(II), Hg(II) and Pb(II) in certified and water samples with satisfactory results.
Journal of Hazardous Materials | 2010
Qun He; Zheng Hu; Yin Jiang; Xijun Chang; Zhifeng Tu; Lina Zhang
A procedure for separation and preconcentration trace amount of Cu(II), Fe(III) and Pb(II) by 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon (AC-AMP) packed column has been proposed. Under the optimized conditions (pH 4, flow rate 2.0 mL min(-1)), Cu(II), Fe(III) and Pb(II) were retained on the column, then quantitatively eluted by 2 mL 1 mol L(-1) nitric acid solution and determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The tolerance limits of electrolytes were very high. The adsorption capacity of AC-AMP was found to be 12.1, 67.1, and 16.2 mg g(-1) for Cu(II), Fe(III), and Pb(II), respectively. According to the definition of International Union of Pure and Applied Chemistry, the detection limits (3 sigma) of this method for Cu(II), Fe(III) and Pb(II) were 0.27, 0.41 and 0.16 microg L(-1), respectively. The relative standard deviation under optimum conditions is less than 3.0% (n=11). The proposed method has been validated by analyzing a certified reference material and successfully applied to the preconcentration and determination of Cu(II), Fe(III), and Pb(II) in actual samples with satisfactory results.
Journal of Hazardous Materials | 2009
Zhenhua Li; Xijun Chang; Zheng Hu; Xinping Huang; Xiaojun Zou; Qiong Wu; Rong Nie
A new method that utilizes zincon-modified activated carbon (AC-ZCN) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III) and Pb(II) onto the AC-ZCN were 17.9 and 26.7 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 1 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3 sigma) of this method for Cr(III) and Pb(II) were 0.91 and 0.65 ng mL(-1), respectively. The relative standard deviation under optimum condition is less than 3.5% (n=8). The method has been applied for the determination of Cr(III) and Pb(II) in biological materials and water samples with satisfactory results.
Talanta | 2010
Xiaoli Chai; Xijun Chang; Zheng Hu; Qun He; Zhifeng Tu; Zhenhua Li
In this work, a new 2-(2-oxoethyl)hydrazine carbothioamide modified silica gel (SG-OHC) sorbent was prepared and applied for preconcentration of trace mercury(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimization of some analytical parameters affecting the adsorption of the analyte such as acidity, shaking time, sample flow rate and volume, eluent condition, and interfering substances were investigated. At pH 3, the maximum static adsorption capacity of Hg(II) onto the SG-OHC was 37.5 mg g(-1). The quantitative recovery (>95%) of Hg(II) could be obtained using 2 mL of 0.5 mol L(-1)HCl and 1% CS(NH(2))(2) solution as eluent. Common coexisting substances did not interfere with the separation of mercury(II) under optimal conditions. The detection limit of present method was 0.10 ng mL(-1), and the relative standard deviation (RSD) was lower than 4.0% (n=8). The prepared sorbent was successfully applied for the preconcentration of trace Hg(II) in certified and water samples with satisfactory results.
Journal of Hazardous Materials | 2008
Xinping Huang; Xijun Chang; Qun He; Yuemei Cui; Yunhui Zhai; Na Jiang
A new tris(2-aminoethyl) amine (TREN) functionalized silica gel (SG-TREN) was prepared and investigated for selective solid-phase extraction (SPE) of trace Cr(III), Cd(II) and Pb(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Identification of the surface modification was characterized and performed on the basis of FT-IR. The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III), Cd(II) and Pb(II) onto the SG-TREN were 32.72, 36.42 and 64.61 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 5 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of International Union of Pure and Applied Chemistry, the detection limits (3sigma) of this method for Cr(III), Cd(II) and Pb(II) were 0.61, 0.14 and 0.55 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=11). The application of this modified silica gel to preconcentration trace Cr(III), Cd(II) and Pb(II) of two water samples gave high accurate and precise results.
Journal of Hazardous Materials | 2011
Qihui Wang; Xijun Chang; Dandan Li; Zheng Hu; Ruijun Li; Qun He
In this work, the immobilization of 4-aminoantipyrine onto bentonite was carried out and it was then used to investigate the adsorption behavior of Cr(III), Hg(II) and Pb(II) ions from aqueous solutions. The separation and preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. Under optimum pH value (pH 4.0), the maximum static adsorption capacity of the sorbent was found to be 38.8, 52.9 and 55.5 mg g(-1) for Cr(III), Hg(II) and Pb(II), respectively. 2.0 mL of 2% thiourea in 1.0 M HCl solution effectively eluted the adsorbed metal ions. The detection limit (3σ) of this method defined by IUPAC was found to be 0.12, 0.09 and 0.23 ng mL(-1) for Cr(III), Hg(II) and Pb(II), respectively. The relative standard deviation (RSD) was lower 3.0% (n=8). The developed method has been validated by analyzing certified reference materials and successfully applied to the determination of trace Cr(III), Hg(II) and Pb(II) in water samples with satisfactory results.