Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiliang Wang is active.

Publication


Featured researches published by Xiliang Wang.


Infection and Immunity | 2006

Protective Immunity Elicited by a Divalent DNA Vaccine Encoding Both the L7/L12 and Omp16 Genes of Brucella abortus in BALB/c Mice

Deyan Luo; Bing Ni; Peng Li; Wei Shi; Songle Zhang; Yue Han; Liwei Mao; Yangdong He; Yuzhang Wu; Xiliang Wang

ABSTRACT This study was designed to evaluate the immunogenicity and the protective efficacy of a divalent fusion DNA vaccine encoding both the Brucella abortus L7/L12 protein (ribosomal protein) and Omp16 protein (outer membrane lipoprotein), designated pcDNA3.1-L7/L12-Omp16. Intramuscular injection of this divalent DNA vaccine into BALB/c mice elicited markedly both humoral and cellular immune responses. The specific antibodies exhibited a dominance of immunoglobulin G2a (IgG2a) over IgG1. In addition, the dual-gene DNA vaccine elicited a strong T-cell proliferative response and induced a large amount of gamma interferon-producing T cells upon restimulation in vitro with recombinant fusion protein L7/L12-Omp16, suggesting the induction of a typical T-helper-1-dominated immune response in vivo. This divalent DNA vaccine could also induce a significant level of protection against challenge with the virulent strain B. abortus 544 in BALB/c mice. Furthermore, the protection level induced by the divalent DNA vaccine was significantly higher than that induced by the univalent DNA vaccines pcDNA3.1-L7/L12 or pcDNA3.1-Omp16. Taken together, the results of this study verify for the first time that the Omp16 gene can be a candidate target for a DNA vaccine against brucellosis. Additionally, a divalent genetic vaccine based on the L7/L12 and Omp16 genes can elicit a stronger cellular immune response and better immunoprotection than the relevant univalent vaccines can.


International Immunopharmacology | 2009

Dysfunction of IL-10-producing type 1 regulatory T cells and CD4+CD25+ regulatory T cells in a mimic model of human multiple sclerosis in Cynomolgus monkeys

Anlun Ma; Zuquan Xiong; Yanxin Hu; Shijie Qi; Lijun Song; Hao Dun; Liangyan Zhang; Deyan Lou; Penghui Yang; Zhongpeng Zhao; Xiliang Wang; Dongqing Zhang; Pierre Daloze; Huifang Chen

CD4(+)CD25(+) Treg and IL-10(+) Tr1 cells play a major role in controlling autoimmunity by suppressing self-reactive T cells. Dysfunction of Tregs appears to be a critical factor in the pathogenesis of autoimmune diseases. Multiple sclerosis (MS) is an inflammatory demyelinating disorder of CNS, where CD4(+) T cells result in nervous tissue damage. The aim of this study was to investigate the protective role of Treg and Tr1 cells in a mimic model of human MS in Cynomolgus monkeys. This study indicated the suppressive capacity of Tregs from MS monkeys was impaired compared with naive controls. The population of CD4(+)CD25(+) Tregs was decreased in acute stage of MS. However, they showed a restored function and percentage in remitting monkeys. In stable phase, CD4(+)CD25(+) Tregs differentially expressed elevated level of CD62P cell adhesion molecule which contributes to the mechanism by which Treg cells inhibit CD4(+) T cell responses. On the other hand, the percentage of CD4(+)IL-10(+) Tr1 and suppressive function of Tr1 cells were found reduced in MS monkeys. IL-10 secretion was diminished almost 9-fold in active MS, and recovered in active MS. This deficit in IL-10 secretion was specific to CD3/CD46, but not to CD3/CD28 stimulation. The concentrations of IFN-gamma secreted by CD3/CD46-activated T cells were also not affected. These results demonstrate that Tregs are dysfunctional in Cynomolgus monkey with MS. Loss of regulatory function appears to be an important factor in the pathogenesis of MS. Hence, to develop new approaches for induction of Tregs in vivo may be beneficial for the clinical treatment in autoimmune diseases.


Vaccine | 2009

Protection of mice from Brucella infection by immunization with attenuated Salmonella enterica serovar typhimurium expressing A L7/L12 and BLS fusion antigen of Brucella.

Zhongpeng Zhao; Min Li; Deyan Luo; Li Xing; Shuo Wu; Yueqiang Duan; Penghui Yang; Xiliang Wang

This study describes the potential use of attenuated Salmonella enterica serovar Typhimurium Strains (S. typhimurium) to express and deliver a L7/L12 and BLS fusion antigen of Brucella as a vaccination strategy to prevent Brucella infection in mice. S. typhimurium X4072 that contained a pTrc99A-BLS-L7/L12 plasmid, designated X4072bl, can deliver a L7/L12 and BLS fusion antigen expressed by the bacterium itself, while S. typhimurium X4550 that contained an asd-pVAX1-BLS-L7/L12 (asd-pBL) plasmid, designated X4550bl, can deliver the antigen to be expressed in target eukaryotic cells. When orally administered to BALB/c mice, both attenuated carrier strains were able to elicit mucosal and systemic immunity, which induced protection against B. abortus 544 infection in mice. The immunogenicity and protective efficacy of X4072bl and X4550bl were compared with a recombinant BLS-L7/L12 fusion protein vaccine (rBL) and a pVAX1-BLS-L7/L12 DNA vaccine (pBL) in this study. When rBL and pBL were intramuscularly injected into mice, both vaccines could also elicit comparable humoral and cellular immune responses, but not mucosal immunity, which therefore induced lower protection. Taken together, Salmonella-based subunit vaccines are a promising vaccine strategy in the prevention of Brucella infection.


Vaccine | 2011

Immunogenicity and protective efficacy of a live attenuated vaccine against the 2009 pandemic A H1N1 in mice and ferrets.

Penghui Yang; Yueqiang Duan; Cheng Wang; Li Xing; Xiao Gao; Chong Tang; Deyan Luo; Zhongpeng Zhao; Weihong Jia; Daxin Peng; Xiufan Liu; Xiliang Wang

A novel 2009 influenza A (H1N1) virus was transmitted from humans to humans worldwide. The live attenuated monovalent A H1N1 vaccine (LAMV) for intranasal administration has shown promising immunogenicity and safety in clinical trials and for human use, but the experimental data based on LAMV is incomplete. In this study, using reverse genetic technology, we produced a cold-adapted (ca), live attenuated BJ/AA ca that contained hemagglutinin (HA) and neuraminidase (NA) genes from a 2009 pandemic A H1N1 isolate, A/Beijing/501/2009 virus (BJ501), and the remaining six internal gene segments from the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AA virus). BJ/AA ca exhibited phenotypes of temperature sensitivity (ts), ca, and attenuation (att). The candidate BJ/AA ca was immunogenic in mice and induced strong mucosal secretory IgA (sIgA) in the respiratory tract. Two dosages of intranasal immunization induced robust HI antibodies and offered efficient protection against challenge by the wild-type (wt) 2009 pandemic A H1N1 (A/Beijing/501/2009 or A/California/07/2009) in mice and ferrets. These results support the evaluation of this vaccine made from a wt strain isolated in China for clinical trials.


Veterinary Microbiology | 2010

Cross-clade protection against HPAI H5N1 influenza virus challenge in BALB/c mice intranasally administered adjuvant-combined influenza vaccine

Penghui Yang; Chong Tang; Deyan Luo; Zhongpeng Zhan; Li Xing; Yueqiang Duan; Weihong Jia; Daxin Peng; Xiufan Liu; Xiliang Wang

The avian H5N1 influenza virus has the potential to cause a new pandemic. The increasing number of recent outbreaks of highly pathogenic avian influenza H5N1 in birds and humans emphasizes the urgent need to develop a potent H5N1 vaccine. Here, we studied the immunogenicity and protective effect of a vaccine prepared from H5N1 inactivated whole virus. This vaccine was intranasally co-administered in mice with phosphate buffered saline, recombinant cholera toxin B subunit (rCTB), cholera toxin (CT), rCTB containing a trace amount of holotoxin (rCTB/CT), polyinosinic:polycytidylic acid double-stranded RNA (polyI:C), or MF59 as an adjuvant. Intranasal administration of H5N1 inactivated whole virus vaccine with rCTB, CT, rCTB/CT, polyI:C, and MF59 elicited an immunological response with both secretory IgA (sIgA) in nasal, lung, and vaginal lavage, and IgG antibody in serum, showing protective immunity against lethal H5N1 infection. Cross-clade protection was also observed in animals immunized with a vaccine derived from Anhui/01/2005(H5N1) with rCTB, CT, rCTB/CT, polyI:C, or MF59 as adjuvants that were subsequently challenged with the A/OT/SZ/097/03 influenza strain.


Vaccine | 2012

Identification of B- and T-cell epitopes from glycoprotein B of herpes simplex virus 2 and evaluation of their immunogenicity and protection efficacy.

Kun Liu; Deyu Jiang; Liangyan Zhang; Zhidong Yao; Zhongwei Chen; Sanke Yu; Xiliang Wang

Herpes simplex virus (HSV) infection is a major health concern worldwide. Evidence obtained from animals and humans indicates that B- and T-cell responses contribute to protective immunity against herpes virus infection. Glycoprotein B is a transmembrane envelope component of HSV-1 and HSV-2, which plays an important role in virion morphogenesis and penetration into host cells, and can induce neutralizing antibodies and protective T-cell response when it is used to immunize humans and animals. However, little is known about gB epitopes that are involved in B- and T-cell activities in vitro and in vivo. Thus, the HSV-2 gB sequence was screened using B- and T-cell epitope prediction systems, and the B-cell regions and the HLA-A*0201-restricted epitopes were identified. These B-cell epitopes elicited high IgG antibody titers in Balb/C mice, with a predominantly IgG1 subclass distribution, which indicated a Th2 bias. Specific IgGs induced by these two epitopes were evaluated as the neutralizing antibodies for virus neutralization. The predicted T-cell epitopes stabilized the HLA-A*0201 molecules on T(2) cells, and stimulate interferon-γ-secreting and cytotoxic CD8(+) T cells. Immunization with the predicted peptides reduced virus shedding and protected against lethal viral challenge in mice. The functional epitopes described herein, both B- and T-cell epitopes, are potentially implicated in vaccine development.


Biochemical and Biophysical Research Communications | 2010

Characterization of a highly pathogenic avian influenza H5N1 virus isolated from an ostrich.

Penghui Yang; Dongmei; Cheng Wang; Chong Tang; Li Xing; Deyan Luo; Zhongpeng Zhan; Yueqiang Duan; Weihong Jia; Daxin Peng; Xiufan Liu; Xiliang Wang

The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among poultry and wild birds has posed a potential threat to human public health. An influenza pandemic happens, when a new subtype that has not previously circulated in humans emerges. Almost all of the influenza pandemics in history have originated from avian influenza viruses (AIV). Birds are significant reservoirs of influenza viruses. In the present study, we performed a survey of avian influenza virus in ostriches and H5N1 virus (A/Ostrich/SuZhou/097/03, China097) was isolated. This H5N1 virus is highly pathogenic to both chickens and mice. It is also able to replicate in the lungs of, and to cause death in, BALB/c mice following intranasal administration. It forms plaques in chicken embryo fibroblast (CEF) cells in the absence of trypsin. The hemagglutinin (HA) gene of the virus is genetically similar to A/Goose/Guangdong/1/96(H5N1) and belongs to clade 0. The HA sequence contains multiple basic amino acids adjacent to the cleavage site, a motif associated with HPAI viruses. More importantly, the existence of H5N1 isolates in ostriches highlights the potential threat of wild bird infections to veterinary and public health.


Vaccine | 2012

Novel Th1-biased adjuvant, SPO1, enhances mucosal and systemic immunogenicity of vaccines administered intranasally in mice

Shu Yu; Chong Tang; Xinfu Shi; Penghui Yang; Li Xing; Xiliang Wang

Oil-in-water emulsions are potent human adjuvants commonly used in effective pandemic influenza vaccines; however, such emulsions that can induce both Th1-biased systemic immune responses and strong mucosal immune responses via an easy method of administration are lacking. To address this need for new adjuvants, we developed a novel oil/water emulsion, SPO1, which allows convenient mucosal immunization via an intranasal spray as well as by parenteral routes. Our report shows that SPO1 was able to boost up immunological resistance by inducing effective mucosal and serum antibodies, and the immune response was polarized to a Th1 pattern, as demonstrated by high IgG2α antibody levels and interferon-gamma production by splenocytes from intranasally (i.n.) immunized mice. Up-regulation of co-stimulatory and antigen-presenting molecules on dendritic cells was also observed in vivo after i.n. immunization, suggesting a possible mechanism for the adjuvant effects of SPO1. Another explanation may simply be a depot of antigen at the immunization site, as evidenced by in vivo imaging of i.n. immunized mice. In conclusion, our results demonstrate that a novel oil/water emulsion, SPO1, is a potent Th1 adjuvant for use in influenza and other vaccines, as it induces strong mucosal and systemic immune responses.


Human Vaccines & Immunotherapeutics | 2015

Protection conferred by virus-like particle vaccines against respiratory syncytial virus infection in mice by intranasal vaccination

Hongjing Gu; Tieling Li; Lina Han; Ping Zhu; Peirui Zhang; Shaogeng Zhang; Sujing Sun; Yueqiang Duan; Li Xing; Zhongpeng Zhao; Chengcai Lai; Bohai Wen; Xiliang Wang; Penghui Yang

Respiratory syncytial virus (RSV) is a major pathogen in infants and the elderly, causing pneumonia and bronchiolitis. Despite decades of research, to date there is still no approved RSV vaccine available. In this study, we developed RSV virus-like particle (VLP) vaccines containing an RSV fusion (F) and/or attachment (G) protein with Newcastle disease virus (NDV) as the platform. The VLPs were expressed in a baculovirus system and purified by sucrose gradient centrifugation. BALB/c mice immunized intranasally (i.n.) with rNDV/RSV/F plus rNDV/RSV/G developed robust humoral, mucosal RSV-specific antibodies and cellular immune responses. Furthermore, rNDV/RSV/F plus rNDV/RSV/G provided better protection than did rNDV/RSV/F or rNDV/RSV/G alone, as shown by an obvious decrease in viral replication together with alleviation of histopathological changes in the lungs of the challenged mice. Our data demonstrate that the intranasal vaccination of combined RSV virus-like particle vaccine candidates has great potential for protection against RSV infection.


Journal of Microbial & Biochemical Technology | 2014

Vaccine and Needle-Free Vaccination Delivery System

Tianyu Ren; Xiliang Wang; Peng Hui Yang

Needle-free injection delivery system is a new method use a unique profile to deliver vaccine to the proper tissue depth for injection. The shift from needle-based to needle-free immunization is also catalyzed, in part, by the realization that skin, which can increase vaccine immunogenicity, is ideal target for vaccine delivery. As a promising delivery of vaccines system, it has the potential to decrease the dose of vaccine antigen, enhance immune response and may furthermore help to reduce costs.

Collaboration


Dive into the Xiliang Wang's collaboration.

Top Co-Authors

Avatar

Li Xing

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Deyan Luo

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhongpeng Zhao

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Liangyan Zhang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinfu Shi

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Bing Ni

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuzhang Wu

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Penghui Yang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge