Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiling Yue is active.

Publication


Featured researches published by Xiling Yue.


Journal of the American Chemical Society | 2013

Selective Cell Death by Photochemically Induced pH Imbalance in Cancer Cells

Xiling Yue; Ciceron O. Yanez; Sheng Yao; Kevin D. Belfield

Singlet oxygen sensitized photodynamic therapy (PDT) relies on the concentration of oxygen in the tissue to be treated. Most cancer lesions, however, have poor vasculature and, as a result, are hypoxic, significantly hindering PDT efficacies. An oxygen-independent PDT method may circumvent this limitation. To address this, we prepared sulfonium salts that produced a pH drop within HCT 116 cells via the generation of a photoacid within the cytosol. This process was driven by one- or two-photon absorption (1PA or 2PA) of the endocytosed photoacid generators (PAGs). One of these PAGs, which had a significantly lower dark cytotoxicity and was more efficient in generating a photoacid, effectively induced necrotic cell death in the HCT 116 cells. The data suggest that PAGs may be an attractive alternative PDT modality to selectively induce cell death in oxygen-deprived tissue such as tumors.


ACS Applied Materials & Interfaces | 2013

Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes.

Yuanwei Zhang; Xiling Yue; Bosung Kim; Sheng Yao; Mykhailo V. Bondar; Kevin D. Belfield

Two squaraine (SQ) dyes, N-propanesulfonate-benzothiazolium squaraine (SQ-1) and N-propanesulfonate-benzoindolium squaraine (SQ-2), were synthesized with sulfonate groups to increase water solubility. Both dyes are almost nonfluorescent in aqueous solution with fluorescent quantum yields of 0.03, but exhibited fluorescence enhancement after noncovalently binding with bovine serum albumin (BSA). Upon addition of BSA, the fluorescence intensity increased by ca. a factor of 10, along with a 10-fold extension in the fluorescence lifetime. SQ-1 and SQ-2 interacted with BSA efficiently and appeared to show a preference for binding at site II, which involves combinational effects of electrostatic and hydrophobic interactions. The fluorogenic squaraine dyes were then used to label BSA, forming BSA-based nanoparticles (NPs) through noncovalent binding. The resulting BSA-SQ NPs exhibited enhanced near-IR fluorescence and reduced aggregation of the squaraine moiety. The BSA-SQ NPs were used for cell incubation and bioimaging studies. Confocal fluorescent images were obtained for HCT 116 cells incubated with the BSA-SQ NPs and LysoSensor Green, demonstrating the utility of the NP probes for intracellular imaging. This strategy ovecomes the generally low fluorescence emission of SQ dyes in water and aggregation-reduced fluorescence, providing a versatile strategy for sensing and imaging in biological environments.


ACS Applied Materials & Interfaces | 2015

Near-IR Two-Photon Fluorescent Sensor for K+ Imaging in Live Cells

Binglin Sui; Xiling Yue; Bosung Kim; Kevin D. Belfield

A new two-photon excited fluorescent K(+) sensor is reported. The sensor comprises three moieties, a highly selective K(+) chelator as the K(+) recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (>52-fold) in detecting K(+) over other physiological metal cations. Upon binding K(+), the sensor switches from nonfluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K(+) sensing in living cells.


ACS Applied Materials & Interfaces | 2015

Steady-state and femtosecond transient absorption spectroscopy of new two-photon absorbing fluorene-containing quinolizinium cation membrane probes.

Xiling Yue; Zach Armijo; Kevan King; Mykhailo V. Bondar; Alma R. Morales; Andrew Frazer; Ivan A. Mikhailov; Olga V. Przhonska; Kevin D. Belfield

The synthesis, linear photophysical characterization, and nonlinear optical properties of two new symmetrical fluorene-containing quinolizinium derivatives, 2,8-bis((E)-2-(7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)vinyl)quinolizinium hexafluorophosphate (1) and 2,8-bis((E)-2-(7-((7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)ethynyl)-9,9-dihexyl-9H-fluoren-2yl)vinyl)quinolizinium hexafluorophosphate (2), are reported. The nature of the dual-band steady-state fluorescence emission of 1 and 2 was determined, and violation of Kashas rule along with a strong dependence on solvent polarity were shown. A relatively complex structure of two-photon absorption (2PA) spectra of 1 and 2, with maximum cross sections of ∼400-600 GM, was determined using the open aperture Z-scan method. Different types of fast relaxation processes with characteristic times of 0.3-0.5 ps and 1.5-2 ps were observed in the excited states of the new compounds via femtosecond transient absorption pump-probe spectroscopy. To better understand the photophysical behavior of 1 and 2, a quantum-mechanical study was undertaken using TD-DFT and ZINDO/S methods. Simulated linear absorption spectra were found to be in good agreement with experimental data, while 2PA cross sections were overestimated. Although the new dyes were highly fluorescent in nonpolar solvents, they were essentially nonfluorescent in polar media. Significantly, the quinolizinium dyes exhibited fluorescence turn-on behavior upon binding to bovine serum album (BSA) protein, exhibiting over 4-fold fluorescence enhancement, which was a finding that was leveraged to demonstrate cell membrane fluorescence imaging of HeLa cells.


ChemPhysChem | 2012

Two-photon absorption and time-resolved stimulated emission depletion spectroscopy of a new fluorenyl derivative.

Kevin D. Belfield; Mykhailo V. Bondar; Alma R. Morales; Xiling Yue; Gheorghe Luchita; Olga V. Przhonska; Olexy D. Kachkovsky

The synthesis, comprehensive linear photophysical characterization, two-photon absorption (2PA), steady-state and time-resolved stimulated emission depletion properties of a new fluorene derivative, (E)-1-(2-(di-p-tolylamino)-9,9-diethyl-9H-fluoren-7-yl)-3-(thiophen-2-yl)prop-2-en-1-one (1), are reported. The primary linear spectral properties, including excitation anisotropy, fluorescence lifetimes, and photostability, were investigated in a number of aprotic solvents at room temperature. The degenerate 2PA spectra of 1 were obtained with open-aperture Z-scan and two-photon induced fluorescence methods, using a 1 kHz femtosecond laser system, and maximum 2PA cross-sections of ∼400-600 GM were obtained. The nature of the electronic absorption processes in 1 was investigated by DFT-based quantum chemical methods implemented in the Gaussian 09 program. The one- and two-photon stimulated emission spectra of 1 were measured over a broad spectral range using a femtosecond pump-probe-based fluorescence quenching technique, while a new methodology for time-resolved fluorescence emission spectroscopy is proposed. An effective application of 1 in fluorescence bioimaging was demonstrated by means of one- and two-photon fluorescence microscopy images of HCT 116 cells containing dye encapsulated micelles.


PLOS ONE | 2013

Deep Vascular Imaging in Wounds by Two-Photon Fluorescence Microscopy

Ciceron O. Yanez; Alma R. Morales; Xiling Yue; Takeo Urakami; Masanobu Komatsu; Tero A.H. Järvinen; Kevin D. Belfield

Deep imaging within tissue (over 300 μm) at micrometer resolution has become possible with the advent of two-photon fluorescence microscopy (2PFM). The advantages of 2PFM have been used to interrogate endogenous and exogenous fluorophores in the skin. Herein, we employed the integrin (cell-adhesion proteins expressed by invading angiogenic blood vessels) targeting characteristics of a two-photon absorbing fluorescent probe to image new vasculature and fibroblasts up to ≈ 1600 μm within wound (neodermis)/granulation tissue in lesions made on the skin of mice. Reconstruction revealed three dimensional (3D) architecture of the vascular plexus forming at the regenerating wound tissue and the presence of a fibroblast bed surrounding the capillaries. Biologically crucial events, such as angiogenesis for wound healing, may be illustrated and analyzed in 3D on the whole organ level, providing novel tools for biomedical applications.


Molecules | 2016

A Deoxyuridine-Based Far-Red Emitting Viscosity Sensor

Mengyuan Wang; Yuanwei Zhang; Xiling Yue; Sheng Yao; Mykhailo V. Bondar; Kevin D. Belfield

A novel deoxyuridine (dU) benzothiazolium (BZ) derivative, referred to as dU-BZ, is reported that was synthesized via Sonogashira coupling reaction methodology. The deoxyuridine building block was introduced to enhance hydrophilicity, while an alkynylated benzothiazolium dye was incorporated for long wavelength absorption to reduce potential phototoxicity that is characteristic of using UV light to excite common fluorphores, better discriminate from native autofluorescence, and potentially facilitate deep tissue imaging. An impressive 30-fold enhancement of fluorescence intensity of dU-BZ was achieved upon increasing viscosity. Fluorescence quantum yields in 99% glycerol/1% methanol (v/v) solution as a function of temperature (293–343 K), together with viscosity-dependent fluorescence lifetimes and radiative and non-radiative rate constants in glycerol/methanol solutions (ranging from 4.8 to 950 cP) were determined. Both fluorescence quantum yields and lifetimes increased with increased viscosity, consistent with results predicted by theory. This suggests that the newly-designed compound, dU-BZ, is capable of functioning as a probe of local microviscosity, an aspect examined by in vitro bioimaging experiments.


International Journal of Nanomedicine | 2016

Pegylated and nanoparticle-conjugated sulfonium salt photo triggers necrotic cell death

Alaa A Fadhel; Xiling Yue; Ebrahim H. Ghazvini Zadeh; Mykhailo V. Bondar; Kevin D. Belfield

Photodynamic therapy (PDT) processes involving the production of singlet oxygen face the issue of oxygen concentration dependency. Despite high oxygen delivery, a variety of properties related to metabolism and vascular morphology in cancer cells result in hypoxic environments, resulting in limited effectiveness of such therapies. An alternative oxygen-independent agent whose cell cytotoxicity can be remotely controlled by light may allow access to treatment of hypoxic tumors. Toward that end, we developed and tested both polyethylene glycol (PEG)-functionalized and hydrophilic silica nanoparticle (SiNP)-enriched photoacid generator (PAG) as a nontraditional PDT agent to effectively induce necrotic cell death in HCT-116 cells. Already known for applications in lithography and cationic polymerization, our developed oxygen-independent PDT, whether free or highly monodispersed on SiNPs, generates acid when a one-photon (1P) or two-photon (2P) excitation source is used, thus potentially permitting deep tissue treatment. Our study shows that when conjugated to SiNPs with protruding amine functionalities (SiNP–PAG9), such atypical PDT agents can be effectively delivered into HCT-116 cells and compartmentalize exclusively in lysosomes and endosomes. Loss of cell adhesion and cell swelling are detected when an excitation source is applied, suggesting that SiNP–PAG9, when excited via near-infrared 2P absorption (a subject of future investigation), can be used as a delivery system to selectively induce cell death in oxygen-deprived optically thick tissue.


Proceedings of SPIE | 2016

RGD-conjugated two-photon absorbing near-IR emitting fluorescent probes for tumor vascular imaging(Conference Presentation)

Kevin D. Belfield; Xiling Yue; Alma R. Morales; Grace W. Githaiga; Adam W. Woodward; Simon Tang; Junko Sawada; Masanobu Komatsu; Xuan Liu

Observation of the activation and inhibition of angiogenesis processes is important in the progression of cancer. Application of targeting peptides, such as a small peptide that contains adjacent L-arginine (R), glycine (G) and L-aspartic acid (D) residues can afford high selectivity and deep penetration in vessel imaging. To facilitate deep tissue vasculature imaging, probes that can be excited via two-photon absorption (2PA) in the near-infrared (NIR) and subsequently emit in the NIR are essential. In this study, the enhancement of tissue image quality with RGD conjugates was investigated with new NIR-emitting pyranyl fluorophore derivatives in two-photon fluorescence microscopy. Linear and nonlinear photophysical properties of the new probes were comprehensively characterized; significantly the probes exhibited good 2PA over a broad spectral range from 700-1100 nm. Cell and tissue images were then acquired and examined, revealing deep penetration and high contrast with the new pyranyl RGD-conjugates up to 350 μm in tumor tissue.


Proceedings of SPIE | 2016

Two-photon fluorescent sensor for K + imaging in live cells (Conference Presentation)

Binglin Sui; Xiling Yue; Bosung Kim; Kevin D. Belfield

It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (<52-fold) in detecting K+ over other physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

Collaboration


Dive into the Xiling Yue's collaboration.

Top Co-Authors

Avatar

Kevin D. Belfield

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bosung Kim

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Alma R. Morales

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Sheng Yao

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Mykhailo V. Bondar

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Binglin Sui

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Ciceron O. Yanez

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Olga V. Przhonska

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Gheorghe Luchita

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Simon Tang

University of Central Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge