Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xin Bian is active.

Publication


Featured researches published by Xin Bian.


Journal of Chemical Physics | 2015

Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism

Zhen Li; Xin Bian; Xiantao Li; George Em Karniadakis

The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.


Journal of Chemical Physics | 2016

A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization

Zhen Li; Xin Bian; Xiu Yang; George Em Karniadakis

We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.


Physical Review E | 2015

Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium

Xin Bian; Zhen Li; Mingge Deng; George Em Karniadakis

We first study fluctuating hydrodynamics (FH) at equilibrium in periodic domains by use of the smoothed dissipative particle dynamics (SDPD) method. We examine the performance of SDPD by comparing it with the theory of FH. We find that the spatial correlation of particle velocity is always the Dirac δ function, irrespective of numerical resolution, in agreement with the theory. However, the spatial correlation of particle density has a finite range of r(c), which is due to the kernel smoothing procedure for the density. Nevertheless, this finite range of correlation can be reduced to an arbitrarily small value by increasing the resolution, that is, reducing r(c), similarly to how the smoothing kernel converges to the Dirac δ function. Moreover, we consider temporal correlation functions (CFs) of random field variables in Fourier space. For sufficient resolution, the CFs of SDPD simulations agree very well with analytical solutions of the linearized FH equations. This confirms that both the shear and sound modes are modeled accurately and that fluctuations are generated, transported, and dissipated in both thermodynamically and hydrodynamically consistent ways in SDPD. We also show that the CFs of the classical dissipative particle dynamics (DPD) method with proper parameters can recover very well the linearized solutions. As a reverse implication, the measurement of CFs provides an effective means of extracting viscosities and sound speed of a DPD system with a new set of input parameters. Subsequently, we study the FH in truncated domains in the context of multiscale coupling via the domain decomposition method, where a SDPD simulation in one subdomain is coupled with a Navier-Stokes (NS) solver in an adjacent subdomain with an overlapping region. At equilibrium, the mean values of the NS solution are known a priori and do not need to be extracted from actual simulations. To this end, we model a buffer region as an equilibrium boundary condition (EBC) at the truncated side of the SDPD simulation. In the EBC buffer, the velocity of particles is drawn from a known Gaussian distribution, that is, the Maxwell-Boltzmann distribution. Due to the finite range of spatial correlation, the density of particles in the EBC buffer must be drawn from a conditional Gaussian distribution, which takes into account the available density distribution of neighboring interior particles. We introduce a Kriging method to provide such a conditional distribution and hence preserve the spatial correlation of density. Spatial and temporal correlations of SDPD simulations in the truncated domain are compared to that in a single complete domain. We find that a gap region between the buffer and interior is important to reduce the extra dissipation generated by the artificial buffer at equilibrium, rendering more investigations necessary for thermal fluctuations in the multiscale coupling of nonequilibrium flows.


Physical Review E | 2016

Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow.

Xin Bian; Mingge Deng; Yu-Hang Tang; George Em Karniadakis

We analyze hydrodynamic fluctuations of a hybrid simulation under shear flow. The hybrid simulation is based on the Navier-Stokes (NS) equations on one domain and dissipative particle dynamics (DPD) on the other. The two domains overlap, and there is an artificial boundary for each one within the overlapping region. To impose the artificial boundary of the NS solver, a simple spatial-temporal averaging is performed on the DPD simulation. In the artificial boundary of the particle simulation, four popular strategies of constraint dynamics are implemented, namely the Maxwell buffer [Hadjiconstantinou and Patera, Int. J. Mod. Phys. C 08, 967 (1997)], the relaxation dynamics [O’Connell and Thompson, Phys. Rev. E 52, R5792 (1995)], the least constraint dynamics [Nie et al.,J. Fluid Mech. 500, 55 (2004); Werder et al., J. Comput. Phys. 205, 373 (2005)], and the flux imposition [Flekkøy et al., Europhys. Lett. 52, 271 (2000)], to achieve a target mean value given by the NS solver. Going beyond the mean flow field of the hybrid simulations, we investigate the hydrodynamic fluctuations in the DPD domain. Toward that end, we calculate the transversal autocorrelation functions of the fluctuating variables in k space to evaluate the generation, transport, and dissipation of fluctuations in the presence of a hybrid interface. We quantify the unavoidable errors in the fluctuations, due to both the truncation of the domain and the constraint dynamics performed in the artificial boundary. Furthermore, we compare the four methods of constraint dynamics and demonstrate how to reduce the errors in fluctuations. The analysis and findings of this work are directly applicable to other hybrid simulations of fluid flow with thermal fluctuations.


Archive | 2017

Dissipative Particle Dynamics: Foundation, Evolution, Implementation, and Applications

Zhen Li; Xin Bian; Xuejin Li; Mingge Deng; Yu-Hang Tang; Bruce Caswell; George Em Karniadakis

Dissipative particle dynamics (DPD) is a particle-based Lagrangian method for simulating dynamic and rheological properties of simple and complex fluids at mesoscopic length and time scales. In this chapter, we present the DPD technique, beginning from its original ad hoc formulation and subsequent theoretical developments. Next, we introduce various extensions of the DPD method that can model non-isothermal processes, diffusion-reaction systems, and ionic fluids. We also present a brief review of programming algorithms for constructing efficient DPD simulation codes as well as existing software packages. Finally, we demonstrate the effectiveness of DPD to solve particle-fluid problems, which may not be tractable by continuum or atomistic approaches.


Biophysical Journal | 2017

Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers

Lu Lu; He Li; Xin Bian; Xuejin Li; George Em Karniadakis

Understanding of intracellular polymerization of sickle hemoglobin (HbS) and subsequent interaction with the membrane of a red blood cell (RBC) is important to predict the altered morphologies and mechanical properties of sickle RBCs in sickle cell anemia. However, modeling the integrated processes of HbS nucleation, polymerization, HbS fiber interaction, and subsequent distortion of RBCs is challenging as they occur at multispatial scales, ranging from nanometers to micrometers. To make progress toward simulating the integrated processes, we propose a hybrid HbS fiber model, which couples fine-grained and coarse-grained HbS fiber models through a mesoscopic adaptive resolution scheme (MARS). To this end, we apply a microscopic model to capture the dynamic process of polymerization of HbS fibers, while maintaining the mechanical properties of polymerized HbS fibers by the mesoscopic model, thus providing a means of bridging the subcellular and cellular phenomena in sickle cell disease. At the subcellular level, this model can simulate HbS polymerization with preexisting HbS nuclei. At the cellular level, if combined with RBC models, the generated HbS fibers could be applied to study the morphologies and membrane stiffening of sickle RBCs. One important feature of the MARS is that it can be easily employed in other particle-based multiscale simulations where a dynamic coarse-graining and force-blending method is required. As demonstrations, we first apply the hybrid HbS fiber model to simulate the interactions of two growing fibers and find that their final configurations depend on the orientation and interaction distance between two fibers, in good agreement with experimental observations. We also model the formation of fiber bundles and domains so that we explore the mechanism that causes fiber branching.


Journal of Computational Physics | 2018

A dissipative particle dynamics method for arbitrarily complex geometries

Zhen Li; Xin Bian; Yu-Hang Tang; George Em Karniadakis

Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier–Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry – the “Brown Pacman” microfluidic device – to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its effectiveness is demonstrated by examining the rich dynamics of surfactant micelles, which are flowing around multiple small cylinders and stenotic regions in the microfluidic device without wall penetration. In addition to stationary arbitrary-shape objects, the new method is particularly useful for problems involving moving and deformable boundaries, because it only uses local information of neighboring particles and satisfies the desired boundary conditions on-the-fly.


Soft Matter | 2014

Construction of dissipative particle dynamics models for complex fluids via the Mori–Zwanzig formulation

Zhen Li; Xin Bian; Bruce Caswell; George Em Karniadakis


Journal of Computational Physics | 2015

Multiscale Universal Interface

Yu-Hang Tang; Shuhei Kudo; Xin Bian; Zhen Li; George Em Karniadakis


Soft Matter | 2016

111 years of Brownian motion.

Xin Bian; Changho Kim; George Em Karniadakis

Collaboration


Dive into the Xin Bian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiantao Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuhei Kudo

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changho Kim

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge