Xin Chen
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xin Chen.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2015
Xin Chen; Jennifer E. Michaels; Thomas E. Michaels
Ultrasonic guided waves are one of the primary methods being investigated for structural health monitoring of plate-like components. A common practice is to collect measurements from a sparse transducer array using the pitch-catch method, which enables interrogation of defects from multiple directions. Thus, knowledge of how guided waves scatter from defects is very useful for detection, localization, and characterization of damage. One way to describe scattering patterns is with a matrix indexed by incident angle and scattered angle, and sparse array measurements essentially sample this matrix. A methodology is proposed in this paper to estimate the complete scattering matrix from these limited array measurements. First, recorded array signals are compensated for geometric spreading loss, wave packet spreading loss, and transducer differences. Initial scattering values are then extracted from the scattered wave packets after baseline subtraction and are augmented using transducer reciprocity and any a priori knowledge of defect geometric symmetry. Finally, radial basis function interpolation is performed on these values to obtain the complete scattering matrix. Scattering matrices are generated from experimental data by cutting notches of different lengths originating from a through-hole in an aluminum plate specimen that is instrumented with a sparse transducer array. The methodology is validated by laser vibrometry measurements performed on a nominally identical specimen for one notch length.
40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing | 2014
Alexander J. Dawson; Jennifer E. Michaels; Ross M. Levine; Xin Chen; Thomas E. Michaels
Angle-beam ultrasonic testing is a common practical technique used for nondestructive evaluation to detect, locate, and characterize a variety of material defects and damage. Greater understanding of the both the incident wavefield produced by an angle-beam transducer and the subsequent scattering from a variety of defects and geometrical features is anticipated to increase the reliability of data interpretation. The focus of this paper is on acquiring and analyzing propagating waves from angle-beam transducers in simple, defect-free plates as a first step in the development of methods for flaw characterization. Unlike guided waves, which excite the plate throughout its thickness, angle-beam bulk waves bounce back and forth between the plate surfaces, resulting in the well-known multiple “skips” or “V-paths.” The experimental setup consists of a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. Although laser vibro...
Proceedings of SPIE | 2011
Thomas E. Michaels; Jennifer E. Michaels; Sang Jun Lee; Xin Chen
Guided waves are being considered for structural health monitoring (SHM) applications, and they can also be used to reduce subsequent inspection times once defects are detected. One proposed SHM method is to use an array of permanently attached piezoelectric transducers to generate and receive guided waves between the various transducer pairs. The interrogation can be done on a continuous or periodic basis to assess the health of the structure. Once defects are suspected in the structure, the traditional approach is to disassemble components for conventional nondestructive evaluation (NDE); however, this is an expensive and time consuming process. A less expensive alternative to conventional NDE is to record acoustic wavefield images of guided waves generated from the attached transducers. These images clearly show details of guided waves as they propagate outward from the source, reflect from structural discontinuities and specimen boundaries, and scatter from any damage sites within the structure. However, the recorded waves are typically narrowband to enable effective visualization of echoes that are relatively compact in time. In this paper, we consider wavefield images that are recorded from a chirp excitation, which offers the advantage of high quality broadband data from a single excitation. However, responses are not directly useful because the received echoes are too extended in time. Signals are post-processed to obtain multiple narrowband and broadband responses containing echoes that are more compact in time to enable visualization of guided waves interacting with structural features. This technique is demonstrated on an aluminum plate that contains attached stiffeners and glued-on piezoelectric disc transducers. Wavefield data are recorded using an air-coupled transducer scanned over the plate surface while one of the attached transducers acts as a guided wave source. Waves interacting with the stiffener and the inactive discs are analyzed via broadband and narrowband processing at multiple frequencies.
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Volume 31 | 2012
Xin Chen; Sang Jun Lee; Jennifer E. Michaels; Thomas E. Michaels
Guided wave structural health monitoring (SHM) is being considered to assess the integrity of plate-like structures for many applications. Prior research has investigated how guided wave propagation is affected by applied loads, which induce anisotropic changes in both dimensions and phase velocity. In addition, it is well-known that applied tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we describe load-differential methods in which signals recorded from different loads at the same damage state are compared without using previously obtained damage-free data. Changes in delay-and-sum images are considered as a function of differential loads and damage state. Load-differential features are extracted from these images that capture the effects of loading as fatigue cracks are opened. Damage detection thresholds are adaptively set based upon the load-differential behavior of the various features, which enables implementation of an automated fatigue crack detection process. The efficacy of the proposed approach is examined using data from a fatigue test performed on an aluminum plate specimen that is instrumented with a sparse array of surface-mounted ultrasonic guided wave transducers.
41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Volume 34 | 2015
Xin Chen; Jennifer E. Michaels; Thomas E. Michaels
Cracks, which frequently initiate from fastener holes as a result of stress concentration, are one of the most common defects in metallic plate-like structures. Among a variety of methods for crack detection, ultrasonic guided waves have been shown to be effective. To examine the performance of guided wave methods in the laboratory, notches are often used to simulate cracks. While extensive research has focused on the scattering of guided waves from a notch as well as a hole, limited work has been done on the incremental scattering resulting from the addition of a notch to an existing hole. This scenario is of particular interest for in situ monitoring of fastener holes, where the goal is to detect changes in scattering caused by crack initiation and growth. An experimental approach is taken here where a broadband chirp excitation is applied to surface-mounted PZT transducers to generate guided waves in an aluminum plate, and the out-of-plane particle motion is measured by a laser vibrometer. Notches are ...
40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing | 2014
Xin Chen; Jennifer E. Michaels; Thomas E. Michaels
A common practice in guided wave structural health monitoring is collecting measurements from a transducer array using the pitch-catch method. Among different array configurations, the spatially distributed array provides a cost-effective solution for rapid interrogation of large, plate-like structures. Several guided wave imaging techniques have been proposed and successfully demonstrated for damage detection and localization. However, the performance of these imaging methods can be compromised by a mismatch between a particular transducer array geometry and the scattering characteristics of a defect of interest. This study proposes a method, which is based upon estimating scattering matrices, to quantify the ability of a specific array geometry to interrogate a scatterer. Several array geometries are evaluated using this method, and a Monte Carlo simulation is then performed to vary the transducer locations to find the array geometry that is best matched to a specific directional scatterer. The efficacy...
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: VOLUME 32 | 2013
Xin Chen; Jennifer E. Michaels; Thomas E. Michaels
Because of their ability to travel relatively long distances with low attenuation, guided waves are being considered as a tool for the detection of defects in plate-like structures for aerospace, civil, and petrochemical applications. When a guided wave encounters a defect, a scattered field related to the characteristics of the defect is generated. The far field scattering behavior can be described by a scattering matrix that quantifies the amplitude of the scattered signal as a function of incident and scattered angles. Because of the mode and frequency dependence of guided waves interacting with defects, the scattering matrix is typically defined for specific guided wave modes (incident and scattered) at a designated frequency. Prior work has utilized finite element modeling and full wavefield scanning to estimate scattering matrices, but these approaches may be impractical because of either computational requirements or experimental issues. Here, we propose a methodology for estimating a scattering matrix based upon limited experimental data recorded from a spatially distributed transducer array. After applying baseline subtraction to extract changes in received signals resulting from the introduction of a scatterer, we further process differenced signals to obtain a limited number of scattering matrix data points corresponding to the incident and scattered angles for each transducer pair. We perform radial basis function interpolation of these initial points to estimate the complete scattering matrix and evaluate the efficacy of the proposed method via experiments with a glued-on linear scatterer.
43RD ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLUME 36 | 2017
Jiadong Hua; Jennifer E. Michaels; Xin Chen; Jing Lin
Many guided wave systems that are being evaluated for nondestructive evaluation or structural health monitoring utilize multiple transducers. Data are typically acquired by exciting each transducer in turn and recording received signals on the remaining transducers either simultaneously or separately. For either case, it can be very slow to acquire data because of the multiple transmission cycles combined with a slow repetition rate and extensive signal averaging. This long acquisition time brings another disadvantage by increasing the risk of environmental changes occurring during the complete acquisition process. For example, applied loads and temperature could change over the several seconds that are frequently required to acquire data. To increase the acquisition speed, it is proposed here to simultaneously trigger multiple transmitters, and each transmitter is driven with a unique, coded excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are pr...
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Volume 31 | 2012
Sang Jun Lee; Jennifer E. Michaels; Xin Chen; Thomas E. Michaels
Detection and localization of fatigue cracks is an important application for inspection and monitoring of civil, mechanical and aerospace structures, but assessment of such damage via ultrasonic guided waves can be problematic when cracks are tightly closed in the absence of applied tensile loads. Proposed here are load-differential methods, which compare signals at one load to those at another load at the same damage state. The main advantage of such methods is that cracks can be detected and localized by analyzing current signals obtained from different loading conditions without using baseline data from the damage-free state. The efficacy of the proposed load-differential imaging method is examined using fatigue test data where multiple cracks grow from a single through-hole. Data were acquired with a spatially distributed array of piezoelectric discs by recording ultrasonic signals as a function of applied uniaxial load at intervals throughout the fatigue test. Load-differential guided wave images are...
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION | 2007
Xin Chen; Jin-Yeon Kim; Jianmin Qu; Kimberly E. Kurtis; S. C. Wu; Laurence J. Jacobs
This paper presents results from tests that use nonlinear acoustic waves to distinguish microcracks in cement‐based materials. Portland cement mortar samples prepared with alkali‐reactive aggregate were exposed to an aggressive environment to induce cracking were compared to control samples, of the same composition, but which were not exposed to aggressive conditions. Two nonlinear ultrasonic methods were used to characterize the samples, with the aim of identifying the time and extent of microcracking; these techniques were a nonlinear acoustical modulation (NAM) method and a harmonic amplitude relation (HAR) method. These nonlinear acoustic results show that both methods can distinguish damaged samples from undamaged ones, demonstrating the potential of nonlinear acoustic waves to provide a quantitative evaluation of the deterioration of cement‐based materials.