Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xin-Yi Cui is active.

Publication


Featured researches published by Xin-Yi Cui.


Environmental Science & Technology | 2014

Assessment of in Vitro Lead Bioaccessibility in House Dust and Its Relationship to in Vivo Lead Relative Bioavailability

Hong-Bo Li; Xin-Yi Cui; Kan Li; Jie Li; Albert L. Juhasz; Lena Q. Ma

House dust samples containing 25-738 mg of Pb kg(-1) from 15 cities in China were assessed for in vitro Pb bioaccessibility and in vivo Pb relative bioavailability. On the basis of stable Pb isotope ratios, the Pb in dust samples mainly originated from coal combustion. Lead bioaccessibility was determined using gastric (GP) and intestinal phase (IP) of solubility bioaccessibility research consortium (SBRC), in vitro gastrointestinal (IVG), Deutsches Institut für Normunge.V. (DIN), and physiologically based extraction test methods (PBET), while Pb relative bioavailability (RBA) was determined using a mouse blood model. Lead bioaccessibility in 24 house dust samples varied significantly (23-99%) depending on the methods. Values from the IP were considerably lower than those from the GP because of the co-precipitation of Pb with iron and re-adsorption onto the dust matrix. The SBRC assay with lower GP pH produced higher Pb bioaccessibility because of enhanced Pb dissolution. When compared to mouse blood data using 12 dust samples (29-60%), SBRC-GP and DIN-GP data were correlated with Pb RBA with r(2) values of 0.68 and 0.85 and intercepts 3.15 and 17.4, respectively. Overall, SBRC-GP had potential to predict Pb RBA in dust samples. However, our data suggested that more research is needed to develop a valid in vitro method for predicting Pb RBA in house dust.


Chemosphere | 2016

Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment.

Rui-Wen He; Yunzi Li; Ping Xiang; Chao Li; Chun-Yang Zhou; Shujun Zhang; Xin-Yi Cui; Lena Q. Ma

Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g(-1), with significantly lower concentrations in dorm dust (median = 0.30 μg g(-1)) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g(-1) with significantly lower concentrations in dorm dust (379 μg g(-1)) than those in the other three types of dust (767, 515, and 731 μg g(-1)). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg(-1) d(-1). However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust.


Ecotoxicology and Environmental Safety | 2016

Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China

Jinhua Wang; Shi-Wei Li; Xin-Yi Cui; Huiming Li; Xin Qian; Cheng Wang; Yixuan Sun

Arsenic, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn total concentrations and bioaccessibilities in 15 urban park dust samples were determined. The oral bioaccessibility measured by the Simple Bioaccessibility Extraction Test (SBET) decreased in the order of Pb>Cd>Zn>Mn>Cu>Co>V>Ni>As>Cr. The Tomlinson pollution load index (PLI) and geoaccumulation index (I(geo)) were calculated to evaluate the pollution extent to which the samples were contaminated. Sources were identified using principal component analysis and Pb isotope compositions. Most elements except Co and V were considered to mainly originate from anthropogenic sources. Non-carcinogenic and carcinogenic risks to humans through urban park dust exposure were assessed using the oral bioaccessibilities of the elements. Ingestion was the main pathway for non-carcinogenic risk. The hazard quotients were below the safe level (=1) for all elements, however, Pb (0.154) and As (0.184) posed potential higher risks to children than adults. The carcinogenic effects occurring were below the acceptable level (10(-4)) for As and <10(-6) for Cd, Co, Cr, and Ni.


Analytical Chemistry | 2015

Activated charcoal based diffusive gradients in thin films for in situ monitoring of bisphenols in waters

Jian-Lun Zheng; Dong-Xing Guan; Jun Luo; Hao Zhang; William Davison; Xin-Yi Cui; Lian-Hong Wang; Lena Q. Ma

Widespread use of bisphenols (BPs) in our daily life results in their elevated concentrations in waters and the need to study their environmental impact, which demands reliable and robust measurement techniques. Diffusive gradients in thin films (DGT) is an in situ passive sampling approach which provides time-integrated data. In this study we developed a new methodology, based on DGT with activated charcoal (AC) as a binding agent, for measuring three BPs (BPA, BPB, and BPF) which incorporated and tested its performance characteristics. Consistent elution efficiencies were obtained using methanol when concentrations of BPs were low and a methanol-NaOH mixture at high concentrations. The diffusion coefficients of BPA, BPB, and BPF in the diffusive gel, measured using an independent diffusion cell, were 5.03 × 10(-6), 5.64 × 10(-6), and 4.44 × 10(-6) cm(2) s(-1) at 25 °C, respectively. DGT with an AC binding gel had a high capacity for BPA, BPB, and BPF at 192, 140, and 194 μg/binding gel disk, respectively, and the binding performance did not deteriorate with time, up to 254 d after production. Time-integrated concentrations of BPs measured in natural waters using DGT devices with AC gels deployed in situ for 7 d were comparable to concentrations measured by an active sampling method. This study demonstrates that AC-based DGT is an effective tool for in situ monitoring of BPs in waters.


Environment International | 2016

Influence of pollution control on lead inhalation bioaccessibility in PM2.5: A case study of 2014 Youth Olympic Games in Nanjing.

Shi-Wei Li; Hong-Bo Li; Jun Luo; Huiming Li; Xin Qian; Miao-Miao Liu; Jun Bi; Xin-Yi Cui; Lena Q. Ma

Pollution controls were implemented to improve the air quality for the 2014 Youth Olympic Games (YOG) in Nanjing. To investigate the influence of pollution control on Pb inhalation bioaccessibility in PM2.5, samples were collected before, during, and after YOG. The objectives were to identify Pb sources in PM2.5 using stable isotope fingerprinting technique and compare Pb inhalation bioaccessibility in PM2.5 using two simulated lung fluids. While artificial lysosomal fluid (ALF) simulates interstitial fluid at pH 7.4, Gambles solution simulates fluid in alveolar macrophages at pH 4.5. The Pb concentration in PM2.5 samples during YOG (88.2ngm(-3)) was 44-48% lower than that in non-YOG samples. Based on stable Pb isotope ratios, Pb in YOG samples was mainly from coal combustion while Pb in non-YOG samples was from coal combustion and smelting activities. While Pb bioaccessibility in YOG samples was lower than those in non-YOG samples (59-79% vs. 55-87%) by ALF, it was higher than those in non-YOG samples (11-29% vs. 5.3-21%) based on Gambles solution, attributing to the lower pH and organic acids in ALF. Different Pb bioaccessibility in PM2.5 between samples resulted from changes in Pb species due to pollution control. PbSO4 was the main Pb species in PM2.5 from coal combustion, which was less soluble in ALF than PbO from smelting activities, but more soluble in Gambles solution. This study showed it is important to consider Pb bioaccessibility during pollution control as source control not only reduced Pb contamination in PM2.5 but also influenced Pb bioaccessibility.


Environment International | 2016

Mechanisms of housedust-induced toxicity in primary human corneal epithelial cells: Oxidative stress, proinflammatory response and mitochondrial dysfunction

Ping Xiang; Rui-Wen He; Yong-He Han; Hong-Jie Sun; Xin-Yi Cui; Lena Q. Ma

Human cornea is highly susceptible to damage by dust. Continued daily exposure to housedust has been associated with increasing risks of corneal injury, however, the underlying mechanism has not been elucidated. In this study, a composite housedust sample was tested for its cytotoxicity on primary human corneal epithelial (PHCE) cells, which were exposed to dust at 5-320μg/100μL for 24h. PHCE cell viability showed a concentration-dependent toxic effect, attributing to elevated intracellular ROS. Moreover, when exposed at >20-80μg/100μL, dust-induced oxidative damage was evidenced by increased malondialdehyde and 8-hydroxy-2-deoxyguanosine (1.3-2.3-fold) and decreased antioxidative capacity (1.6-3.5-fold). Alteration of mRNA expression of antioxidant enzymes (SOD1, CAT, HO-1, TRXR1, GSTM1, GSTP1, and GPX1) and pro-inflammatory mediators (IL-1β, IL-6, IL-8, TNF-α, and MCP-1) were also observed. Furthermore, the mitochondrial transmembrane potential was dissipated from 9.2 to 82%. Our results suggested that dust-induced oxidative stress probably played a vital role in the cytotoxicity in PHCE cells, which may have contributed to dust-induced impairment of human cornea.


Environmental Pollution | 2015

Toxic metals in children's toys and jewelry: Coupling bioaccessibility with risk assessment

Xin-Yi Cui; Shi-Wei Li; Shujun Zhang; Ying-Ying Fan; Lena Q. Ma

A total of 45 childrens toys and jewelry were tested for total and bioaccessible metal concentrations. Total As, Cd, Sb, Cr, Ni, and Pb concentrations were 0.22-19, 0.01-139, 0.1-189, 0.06-846, 0.14-2894 and 0.08-860,000 mg kg(-1). Metallic products had the highest concentrations, with 3-7 out of 13 samples exceeding the European Union safety limit for Cd, Pb, Cr, or Ni. However, assessment based on hazard index >1 and bioaccessible metal showed different trends. Under saliva mobilization or gastric ingestion, 11 out of 45 samples showed HI >1 for As, Cd, Sb, Cr, or Ni. Pb with the highest total concentration showed HI <1 for all samples while Ni showed the most hazard with HI up to 113. Our data suggest the importance of using bioaccessibility to evaluate health hazard of metals in childrens toys and jewelry, and besides Pb and Cd, As, Ni, Cr, and Sb in childrens products also deserve attention.


Environmental Science & Technology | 2016

Predicting the Relative Bioavailability of DDT and Its Metabolites in Historically Contaminated Soils Using a Tenax-Improved Physiologically Based Extraction Test (TI-PBET)

Chao Li; Hong-Jie Sun; Albert L. Juhasz; Xin-Yi Cui; Lena Q. Ma

Due to their static nature, physiologically based in vitro assays often fail to provide sufficient sorption capacity for hydrophobic organic contaminants (HOCs). The addition of a sorption sink to in vitro intestinal solution has the potential to mimic dynamic intestinal uptake for HOCs, thereby increasing their desorption from soil. However, the effectiveness of sorption sinks for improving in vitro assays needs to be compared with in vivo data. In this study, Tenax was added as a sorption sink into the physiologically based extraction test (PBET), while DDT and its metabolites (DDTr) were investigated as typical HOCs. Tenax added at 0.01-0.2 g to the PBET intestinal solution sorbed ∼100% of DDTr in 6.3-19 min, indicating its ability as an effective sorption sink. DDTr bioaccessibility in six contaminated soils using Tenax-improved PBET (TI-PBET; 27-56%) was 3.4-22 fold greater than results using the PBET (1.2-15%). In vivo DDTr relative bioavailability (RBA) was measured using a mouse adipose model with values of 17.9-65.4%. The inclusion of Tenax into PBET improved the in vivo-in vitro correlation from r(2) = 0.36 (slope = 2.1 for PBET) to r(2) = 0.62 (slope = 1.2 for TI-PBET), illustrating that the inclusion of Tenax as a sorption sink improved the in vitro prediction of DDTr RBA in contaminated soils.


Chemosphere | 2016

Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices

Xin-Yi Cui; Ping Xiang; Rui-Wen He; Albert L. Juhasz; Lena Q. Ma

Cleanup goals for sites contaminated with persistent organic pollutants (POPs) are often established based on total contaminant concentrations. However, mounting evidence suggests that understanding contaminant bioavailability in soils is necessary for accurate assessment of contaminant exposure to humans via oral ingestion pathway. Animal-based in vivo tests have been used to assess contaminant bioavailability in soils; however, due to ethical issues and cost, it is desirable to use in vitro assays as alternatives. Various in vitro methods have been developed, which simulate human gastrointestinal (GI) tract using different digestion fluids. These methods can be used to predict POP bioavailability in soils, foods, and indoor dust after showing good correlation with in vivo animal data. Here, five common in vitro methods are evaluated and compared using PAHs and PBDEs as an example of traditional and emerging POPs. Their applications and limitations are discussed while focusing on method improvements and future challenges to predict POP bioavailability in different matrices. The discussions should shed light for future research to accurately assess human exposure to POPs via oral ingestion pathway.


Environment International | 2016

Molecular mechanisms of dust-induced toxicity in human corneal epithelial cells: Water and organic extract of office and house dust

Ping Xiang; Rong-Yan Liu; Hong-Jie Sun; Yong-He Han; Rui-Wen He; Xin-Yi Cui; Lena Q. Ma

Human corneal epithelial (HCE) cells are continually exposed to dust in the air, which may cause corneal epithelium damage. Both water and organic soluble contaminants in dust may contribute to cytotoxicity in HCE cells, however, the associated toxicity mechanisms are not fully elucidated. In this study, indoor dust from residential houses and commercial offices in Nanjing, China was collected and the effects of organic and water soluble fraction of dust on primary HCE cells were examined. The concentrations of heavy metals in the dust and dust extracts were determined by ICP-MS and PAHs by GC-MS, with office dust having greater concentrations of heavy metals and PAHs than house dust. Based on LC50, organic extract was more toxic than water extract, and office dust was more toxic than house dust. Accordingly, the organic extracts induced more ROS, malondialdehyde, and 8-Hydroxydeoxyguanosine and higher expression of inflammatory mediators (IL-1β, IL-6, and IL-8), and AhR inducible genes (CYP1A1, and CYP1B1) than water extracts (p<0.05). Extracts of office dust presented greater suppression of superoxide dismutase and catalase activity than those of house dust. In addition, exposure to dust extracts activated NF-κB signal pathway except water extract of house dust. The results suggested that both water and organic soluble fractions of dust caused cytotoxicity, oxidative damage, inflammatory response, and activation of AhR inducible genes, with organic extracts having higher potential to induce adverse effects on primary HCE cells. The results based on primary HCE cells demonstrated the importance of reducing contaminants in indoor dust to reduce their adverse impacts on human eyes.

Collaboration


Dive into the Xin-Yi Cui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert L. Juhasz

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge