Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xin-Yi Yang is active.

Publication


Featured researches published by Xin-Yi Yang.


Scientific Reports | 2015

Transforming berberine into its intestine-absorbable form by the gut microbiota

Ru Feng; Jia-Wen Shou; Zhen-Xiong Zhao; Chi-Yu He; Chao Ma; Min Huang; Jie Fu; Xiang-Shan Tan; Xiao-Yang Li; Bao-Ying Wen; Xi Chen; Xin-Yi Yang; Gang Ren; Yuan Lin; Yangchao Chen; Xuefu You; Yan Wang; Jian-Dong Jiang

The gut microbiota is important in the pathogenesis of energy-metabolism related diseases. We focused on the interaction between intestinal bacteria and orally administered chemical drugs. Oral administration of berberine (BBR) effectively treats patients with metabolic disorders. However, because BBR exhibits poor solubility, its absorption mechanism remains unknown. Here, we show that the gut microbiota converts BBR into its absorbable form of dihydroberberine (dhBBR), which has an intestinal absorption rate 5-fold that of BBR in animals. The reduction of BBR to dhBBR was performed by nitroreductases of the gut microbiota. DhBBR was unstable in solution and reverted to BBR in intestine tissues via oxidization. Heat inactivation of intestinal homogenate did not inhibit dhBBR oxidization, suggesting the process a non-enzymatic reaction. The diminution of intestinal bacteria via orally treating KK-Ay mice with antibiotics decreased the BBR-to-dhBBR conversion and blood BBR; accordingly, the lipid- and glucose-lowering efficacy of BBR was reduced. Conclusively, the gut microbiota reduces BBR into its absorbable form of dhBBR, which then oxidizes back to BBR after absorption in intestine tissues and enters the blood. Thus, interaction(s) between the gut microbiota and orally administrated drugs may modify the structure and function of chemicals and be important in drug investigation.


Journal of Antimicrobial Chemotherapy | 2010

In vivo antibacterial activity of nemonoxacin, a novel non-fluorinated quinolone

Cong-Ran Li; Yi Li; Guo-Qing Li; Xin-Yi Yang; Wei-Xin Zhang; Ren-Hui Lou; Jing-Fang Liu; Min Yuan; Philip Huang; Shan Cen; Liyan Yu; Li-Xun Zhao; Jian-Dong Jiang; Xuefu You

OBJECTIVES To evaluate the in vivo antibacterial efficacy of nemonoxacin, a novel C8-methoxy non-fluorinated quinolone in murine systemic and local infection models. METHODS The efficacy of nemonoxacin in systemic infections was evaluated in mouse peritonitis models using isolates of methicillin-susceptible Staphylococcus aureus (MSSA, n=1), methicillin-resistant S. aureus (MRSA, n=1), methicillin- and levofloxacin-resistant Staphylococcus capitis (levofloxacin-resistant MRSC, n=1), penicillin-intermediate Streptococcus pneumoniae (PISP, n=1), penicillin-resistant S. pneumoniae (PRSP, n=2), Enterococcus faecalis (n=2, including 1 vancomycin-resistant Enterococcus, VRE) and Escherichia coli (n=3). The local infections included mouse pulmonary infections caused by PRSP (n=1), Klebsiella pneumoniae (n=1) and mouse ascending urinary tract infection caused by E. coli (n=1). RESULTS In the mouse systemic infection model, nemonoxacin demonstrated potent activity against MSSA (ED(50) =2.08 mg/kg), MRSA (ED(50) =2.59 mg/kg), levofloxacin-resistant MRSC (ED(50) =2.52 mg/kg), PISP (ED(50) =5.47 mg/kg), PRSP (ED(50) =3.68-5.28 mg/kg) and E. coli (ED(50) =3.13-5.28 mg/kg), and moderate activity towards E. faecalis infection (ED(50) =8.48-15.16 mg/kg). The therapeutic efficacy of nemonoxacin was significantly higher (P<0.01) than that of levofloxacin in infections caused by Gram-positive isolates (MSSA, MRSA, levofloxacin-resistant MRSC, PISP, PRSP and E. faecalis), but less potent than that of levofloxacin against E. coli infection (P<0.01). Nemonoxacin in vivo efficacy results with Gram-positive isolates (2- to 5-fold ED(50) advantage over levofloxacin) are consistent with the MIC data (4- to 16-fold MIC advantage of nemonoxacin over levofloxacin). In the mouse pulmonary infection model, nemonoxacin showed potent activity towards PRSP (higher than levofloxacin) and K. pneumoniae (lower than levofloxacin) infections. In the mouse ascending urinary tract infection model, nemonoxacin exhibited potent activity against E. coli infection (lower than levofloxacin). CONCLUSIONS The results validated the potent efficacy of nemonoxacin in vivo. The higher efficacy of nemonoxacin than of levofloxacin towards infections caused by Gram-positive cocci (especially MRSA, levofloxacin-resistant MRSC, PRSP and VRE) warrants investigation of its clinical use.


Journal of Applied Toxicology | 2013

Toxicokinetic study of melamine in the presence and absence of cyanuric acid in rats

Jing Pang; Guo-Qing Li; Cong-Ran Li; Xin-Yi Yang; Xi Lu; Xin-Xin Hu; Qian-Qian Zhai; Wei-Xin Zhang; Jian-Dong Jiang; Xuefu You

Several lines of evidence show that the nephrotoxic effect of melamine (MEL) in animals is consistent with combined ingestion of MEL and cyanuric acid (CYA). The aim of the present study was to compare the toxicokinetics of MEL in the presence and absence of CYA, and to elucidate the correlation between toxicity and kinetic properties of MEL. Sprague–Dawley rats were administered a single oral dose of MEL (100 mg kg−1) with or without CYA (100 mg kg−1). Plasma and tissue samples were analyzed by liquid chromatography–tandem mass spectrometric (LC–MS/MS) assay. Significant changes in toxicokinetic parameters of MEL such as lower maximum concentration (7.4 ± 3.5 vs 78.0 ± 11.0 µg ml−1) and area under curve (94.9 ± 53.5 vs 295.1 ± 93.7 µg h ml−1), higher plasma elimination half‐life (7.0 ± 3.3 vs 2.5 ± 0.3 h) and volume of distribution (11 505.5 ± 5030.3 vs 1312.7 ± 337.7 ml kg−1), as well as significantly higher concentration of MEL in rat kidney (2.96–274.15 vs < 1 µg g−1) were detected in the CYA co‐administration group when compared with MEL alone group (P < 0.05). The differences in kinetic parameters between the two groups meant that CYA co‐administration could lower absorption, slow excretion and induce tissue accumulation of MEL, which correlated well with the generation and development of renal toxicity. In conclusion, co‐administration with CYA leads to the alteration of the kinetic characteristics of MEL, which provides an additional explanation for renal toxicity. Copyright


Antimicrobial Agents and Chemotherapy | 2014

In Vivo Antibacterial Activity of MRX-I, a New Oxazolidinone

Cong-Ran Li; Qian-Qian Zhai; Xiu-Kun Wang; Xin-Xin Hu; Guo-Qing Li; Wei-Xin Zhang; Jing Pang; Xi Lu; Hong Yuan; Mikhail Fedorovich Gordeev; Le-Tian Chen; Xin-Yi Yang; Xuefu You

ABSTRACT MRX-I is a potent oxazolidinone antibiotic against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant Streptococcus pneumoniae (PRSP), penicillin-intermediate S. pneumoniae (PISP), and vancomycin-resistant enterococci (VRE). In this study, the in vivo efficacy of orally administered MRX-I was evaluated using linezolid as a comparator. MRX-I showed the same or better efficacy than linezolid in both systemic and local infection models against the tested strains.


Acta Pharmaceutica Sinica B | 2014

Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China

Lu Nie; Yuemeng Lv; Min Yuan; Xin-Xin Hu; Tongying Nie; Xin-Yi Yang; Guo-Qing Li; Jing Pang; Jingpu Zhang; Cong-Ran Li; Xiu-Kun Wang; Xuefu You

The objective of this study was to investigate the genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii clinical isolates from Beijing, China. 173 A. baumannii clinical isolates from hospitals in Beijing from 2006 to 2009 were first subjected to high level aminoglycoside resistance (HLAR, MIC to gentamicin and amikacin>512 µg/mL) phenotype selection by broth microdilution method. The strains were then subjected to genetic basis analysis by PCR detection of the aminoglycoside modifying enzyme genes (aac(3)-I, aac(3)-IIc, aac(6′)-Ib, aac(6′)-II, aph(4)-Ia, aph(3′)-I, aph(3′)-IIb, aph(3′)-IIIa, aph(3′)-VIa, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(2″)-Ia, ant(3″)-I and ant(4′)-Ia) and the 16S rRNA methylase genes (armA, rmtB and rmtC). Correlation analysis between the presence of aminoglycoside resistance gene and HLAR phenotype were performed by SPSS. Totally 102 (58.96%) HLAR isolates were selected. The HLAR rates for year 2006, 2007, 2008 and 2009 were 52.63%, 65.22%, 51.11% and 70.83%, respectively. Five modifying enzyme genes (aac(3)-I, detection rate of 65.69%; aac(6′)-Ib, detection rate of 45.10%; aph(3′)-I, detection rate of 47.06%; aph(3′)-IIb, detection rate of 0.98%; ant(3″)-I, detection rate of 95.10%) and one methylase gene (armA, detection rate of 98.04%) were detected in the 102 A. baumannii with aac(3)-I+aac(6′)-Ib+ant(3″)-I+armA (detection rate of 25.49%), aac(3)-I+aph(3′)-I+ant(3″)-I+armA (detection rate of 21.57%) and ant(3″)-I+armA (detection rate of 12.75%) being the most prevalent gene profiles. The values of chi-square tests showed correlation of armA, ant(3″)-I, aac(3)-I, aph(3′)-I and aac(6′)-Ib with HLAR. armA had significant correlation (contingency coefficient 0.685) and good contingency with HLAR (kappa 0.940). The high rates of HLAR may cause a serious problem for combination therapy of aminoglycoside with β-lactams against A. baumannii infections. As armA was reported to be able to cause high level aminoglycoside resistance to most of the clinical important aminoglycosides (gentamicin, amikacin, tobramycin, etc), the function of aminoglycoside modifying enzyme gene(s) in A. baumannii carrying armA deserves further investigation.


Metabolism-clinical and Experimental | 2017

Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism

Yan Wang; Jia-Wen Shou; Xiao-Yang Li; Zhen-Xiong Zhao; Jie Fu; Chi-Yu He; Ru Feng; Chao Ma; Bao-Ying Wen; Fang Guo; Xin-Yi Yang; Yan-Xing Han; Lu-Lu Wang; Qian Tong; Xuefu You; Yuan Lin; Wei-Jia Kong; Shuyi Si; Jian-Dong Jiang

OBJECTIVE Berberine (BBR) clinically lowers blood lipid and glucose levels via multi-target mechanisms. One of the possible mechanisms is related to its effect on the short chain fatty acids (SCFAs) of the gut microbiota. The goal of this study is to investigate the therapeutic effect and mode of action of BBR working through SCFAs of the gut microbiota (especially, butyrate). METHODS Gas chromatography (GC) was used to detect butyrate and other SCFAs chemically. The effect of BBR on butyrate production was investigated in vitro as well as in several animal systems. Microarrays were used to analyze the composition change in the intestinal bacteria community after treatment with BBR. BBR-induced change in the energy production and gene regulation of intestinal bacteria was examined in order to elucidate the underlying molecular mechanisms. RESULTS We show that oral administration of BBR in animals promoted the gut microbiota to produce butyrate, which then enters the blood and reduces blood lipid and glucose levels. Incubating gut bacterial strains in vitro with BBR increased butyrate production. Orally treating animals directly with butyrate reduced blood lipid and glucose levels through a mechanism different from that of BBR. Intraperitoneal BBR administration did not increase butyrate but reduced blood lipid and glucose levels, suggesting that BBR has two modes of action: the direct effect of the circulated BBR and the indirect effect working through butyrate of the gut microbiota. Pre-treating animals orally with antibiotics abolished the effect of BBR on butyrate. A mechanism study showed that BBR (given orally) modified mice intestinal bacterial composition by increasing the abundance of butyrate-producing bacteria. Furthermore, BBR suppressed bacterial ATP production and NADH levels, resulting in increased butyryl-CoA and, eventually, butyrate production via upregulating phosphotransbutyrylase/butyrate kinase and butyryl-CoA:acetate-CoA transferase in bacteria. CONCLUSION Promotion of butyrate (etc) production in gut microbiota might be one of the important mechanisms of BBR in regulating energy metabolism.


Antimicrobial Agents and Chemotherapy | 2009

In Vivo Antibacterial Activity of Vertilmicin, a New Aminoglycoside Antibiotic

Xuefu You; Cong-Ran Li; Xin-Yi Yang; Min Yuan; Wei-Xin Zhang; Ren-Hui Lou; Yue-Ming Wang; Guo-Qing Li; Hui-Zhen Chen; Dan-Qing Song; Cheng-Hang Sun; Shan Cen; Liyan Yu; Li-Xun Zhao; Jian-Dong Jiang

ABSTRACT Vertilmicin is a novel aminoglycoside antibiotic with potent activity against gram-negative and -positive bacteria in vitro. In this study, we further evaluated the efficacy of vertilmicin in vivo in systemic and local infection animal models. We demonstrated that vertilmicin had relatively high and broad-spectrum activities against mouse systemic infections caused by Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis. The 50% effective doses of subcutaneously administered vertilmicin were 0.63 to 0.82 mg/kg, 0.18 to 0.29 mg/kg, 0.25 to 0.99 mg/kg, and 4.35 to 7.11 mg/kg against E. coli, K. pneumoniae, S. aureus, and E. faecalis infections, respectively. The therapeutic efficacy of vertilmicin was generally similar to that of netimicin, better than that of gentamicin in all the isolates tested, and better than that of verdamicin against E. coli 9612 and E. faecalis HH22 infections. The therapeutic efficacy of vertilmicin was further confirmed in local infection models of rabbit skin burn infection and mouse ascending urinary tract infection.


Antimicrobial Agents and Chemotherapy | 2008

In Vitro Antibacterial Activity of Vertilmicin and Its Susceptibility to Modifications by the Recombinant AAC(6′)-APH(2″) Enzyme

Cong-Ran Li; Xin-Yi Yang; Ren-Hui Lou; Wei-Xin Zhang; Yue-Ming Wang; Min Yuan; Yi Li; Hui-Zhen Chen; Bin Hong; Cheng-Hang Sun; Li-Xun Zhao; Zhuorong Li; Jian-Dong Jiang; Xuefu You

ABSTRACT Vertilmicin is a new semisynthetic aminoglycoside with a structure similar to that of netilmicin except for a methyl group at the C-6′ position. In the present study, the in vitro antibacterial activity of vertilmicin was studied, and its susceptibility to modifications by the recombinant aminoglycoside bifunctional modifying enzyme AAC(6′)-APH(2″) was compared with those of verdamicin and netilmicin. A total of 1,185 clinical isolates collected from hospitals in Beijing between 2000 and 2001 were subjected to the in vitro antibacterial activity evaluations, including MIC, minimum bactericidal concentration (MBC), and time-kill curve tests. The MICs were evaluated in non-gentamicin-resistant (gentamicin-susceptible and gentamicin-intermediate) strains and gentamicin-resistant strains, respectively. For most of the non-gentamicin-resistant bacteria (except for the isolates of Pseudomonas spp.), the MIC90s of vertilmicin were in the range of 0.5 to 8 μg/ml, comparable to those of the reference aminoglycosides. For the gentamicin-resistant isolates, the three semisynthetic aminoglycosides (vertilmicin, netilmicin, and amikacin) demonstrated low MIC50s and/or MIC90s, as well as high percent susceptibility values. Among the study drugs, vertilmicin showed the lowest MIC90s, 16 μg/ml, for the gram-positive gentamicin-resistant isolates of Staphylococcus aureus and Staphylococcus epidermidis. Meanwhile, vertilmicin was a potent bactericidal agent, with MBC/MIC ratios in the range of 1 to 2 for Escherichia coli, Klebsiella pneumoniae, and S. aureus and 1 to 4 for S. epidermidis. The time-kill curve determination further demonstrated that this effect was rapid and concentration dependent. In evaluations of susceptibility to modifications by the recombinant AAC(6′)-APH(2″) with maximum rate of metabolism/Km measurements, vertilmicin exhibited susceptibilities to both acetylation and phosphorylation lower than those of netilmicin and verdamicin.


PLOS ONE | 2013

In Vitro Activity of Sodium New Houttuyfonate Alone and in Combination with Oxacillin or Netilmicin against Methicillin-Resistant Staphylococcus aureus

Xi Lu; Xin-Yi Yang; Xue Li; Yun Lu; Zhitao Ren; Longyin Zhao; Xin-Xin Hu; Jian-Dong Jiang; Xuefu You

Background Staphylococcus aureus can cause severe infections, including bacteremia and sepsis. The spread of methicillin-resistant Staphylococcus aureus (MRSA) highlights the need for novel treatment options. Sodium new houttuyfonate (SNH) is an analogue of houttuynin, the main antibacterial ingredient of Houttuynia cordata Thunb. The aim of this study was to evaluate in vitro activity of SNH and its potential for synergy with antibiotics against hospital-associated MRSA. Methodology A total of 103 MRSA clinical isolates recovered in two hospitals in Beijing were evaluated for susceptibility to SNH, oxacillin, cephalothin, meropenem, vancomycin, levofloxacin, minocycline, netilmicin, and trimethoprim/sulfamethoxazole by broth microdilution. Ten isolates were evaluated for potential for synergy between SNH and the antibiotics above by checkerboard assay. Time-kill analysis was performed in three isolates to characterize the kill kinetics of SNH alone and in combination with the antibiotics that engendered synergy in checkerboard assays. Besides, two reference strains were included in all assays. Principal Findings SNH inhibited all test strains with minimum inhibitory concentrations (MICs) ranging from 16 to 64 µg/mL in susceptibility tests, and displayed inhibition to bacterial growth in concentration-dependent manner in time-kill analysis. In synergy studies, the combinations of SNH-oxacillin, SNH-cephalothin, SNH-meropenem and SNH-netilmicin showed synergistic effects against 12 MRSA strains with median fractional inhibitory concentration (FIC) indices of 0.38, 0.38, 0.25 and 0.38 in checkerboard assays. In time-kill analysis, SNH at 1/2 MIC in combination with oxacillin at 1/128 to 1/64 MIC or netilmicin at 1/8 to 1/2 MIC decreased the viable colonies by ≥2log10 CFU/mL. Conclusions/Significance SNH demonstrated in vitro antibacterial activity against 103 hospital-associated MRSA isolates. Combinations of sub-MIC levels of SNH and oxacillin or netilmicin significantly improved the in vitro antibacterial activity against MRSA compared with either drug alone. The SNH-based combinations showed promise in combating MRSA.


Applied Microbiology and Biotechnology | 2017

Recombinant expression and biochemical characterization of Mycobacterium tuberculosis 3Fe-4S ferredoxin Rv1786

Yun Lu; Feng Qiao; Yue Li; Xiao-Hong Sang; Cong-Ran Li; Jian-Dong Jiang; Xin-Yi Yang; Xuefu You

Ferredoxins are iron-sulfur protein that mediate electron transfer in cytochrome P450 mono-oxygenase (CYP)-related catalytic reactions in a wide variety of organisms. Rv1786 is a putative ferredoxin, encoded by a gene located downstream of the gene encoding CYP143A1 in the Mycobacterium tuberculosis genome. However, the structure and function of Rv1786 have remained unclear. Here, the recombinant Mtb Rv1786 was expressed, purified as a His-tagged form and characterized with [3Fe-4S] clusters as its cofactors using a series of measurements including SDS-PAGE, western blot, UV/Visible, MALDI-TOF/TOF-MS, and electron paramagnetic resonance spectroscopic analysis. Based on the assessments of surface plasmon resonance (SPR) and steady state kinetic assays, Rv1786 was found to be able to couple with both ferredoxin reductase A (FdrA) and flavoprotein reductase A (FprA) as redox partner, but with a stronger binding to FprA and a better coupling activity to FdrA. Preliminary structural and biochemical characterization of Mtb Rv1786 as a redox partner is presented here.

Collaboration


Dive into the Xin-Yi Yang's collaboration.

Top Co-Authors

Avatar

Xuefu You

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Cong-Ran Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jian-Dong Jiang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Guo-Qing Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Wei-Xin Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Min Yuan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xin-Xin Hu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ren-Hui Lou

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jing Pang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Shan Cen

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge