Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinbin Feng is active.

Publication


Featured researches published by Xinbin Feng.


AMBIO: A Journal of the Human Environment | 2007

A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition

S. E. Lindberg; Russell Bullock; Ralf Ebinghaus; Daniel R. Engstrom; Xinbin Feng; William F. Fitzgerald; Nicola Pirrone; Eric Prestbo; Christian Seigneur

Abstract A panel of international experts was convened in Madison, Wisconsin, in 2005, as part of the 8th International Conference on Mercury as a Global Pollutant. Our charge was to address the state of science pertinent to source attribution, specifically our key question was: “For a given location, can we ascertain with confidence the relative contributions of local, regional, and global sources, and of natural versus anthropogenic emissions to mercury deposition?” The panel synthesized new research pertinent to this question published over the past decade, with emphasis on four major research topics: long-term anthropogenic change, current emission and deposition trends, chemical transformations and cycling, and modeling and uncertainty. Within each topic, the panel drew a series of conclusions, which are presented in this paper. These conclusions led us to concur that the answer to our question is a “qualified yes,” with the qualification being dependent upon the level of uncertainty one is willing to accept. We agreed that the uncertainty is strongly dependent upon scale and that our question as stated is answerable with greater confidence both very near and very far from major point sources, assuming that the “global pool” is a recognizable “source.” Many regions of interest from an ecosystem-exposure standpoint lie in between, where source attribution carries the greatest degree of uncertainty.


Journal of Hazardous Materials | 2009

Mercury pollution in Asia: a review of the contaminated sites.

Ping Li; Xinbin Feng; Guangle Qiu; Lihai Shang; Zhonggen Li

This article describes the mercury contaminated sites in Asia. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric mercury (Hg), responsible for over half of the global emission. Based on different emission source categories, the mercury contaminated sites in Asia were divided into various types, such as Hg pollution from Hg mining, gold mining, chemical industry, metal smelting, coal combustion, metropolitan cities, natural resources and agricultural sources. By the review of a large number of studies, serious Hg pollutions to the local environment were found in the area influenced by chemical industry, mercury mining and gold mining. With the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain), economic (e.g. swift growth) and social factors (e.g. high population density), more effort is still needed to understand the biogeochemistry cycle of Hg and associated health effects in Asia. Safer alternatives and cleaner technologies must be developed and effectively implemented to reduce mercury emission; remedial techniques are also required to restore the historical mercury pollution in Asia.


Environmental Health Perspectives | 2010

In Inland China, Rice, Rather than Fish, Is the Major Pathway for Methylmercury Exposure

Hua Zhang; Xinbin Feng; Thorjørn Larssen; Guangle Qiu; Rolf D. Vogt

Background Fish consumption is considered the primary pathway of methylmercury (MeHg) exposure for most people in the world. However, in the inland regions of China, most of the residents eat little fish, but they live in areas where a significant amount of mercury (Hg) is present in the environment. Objectives We assessed concentrations of total Hg and MeHg in samples of water, air, agricultural products, and other exposure media to determine the main exposure pathway of Hg in populations in inland China. Methods We selected Guizhou Province for our study because it is highly contaminated with Hg and therefore is representative of other Hg-contaminated areas in China. We selected four study locations in Guizhou Province: three that represent typical environments with severe Hg pollution [due to Hg mining and smelting (Wanshan), traditional zinc smelting (recently closed; Weining), and heavy coal-based industry (Qingzhen)], and a village in a remote nature reserve (Leigong). Results The probable daily intake (PDI) of MeHg for an adult population based on 60 kg body weight (bw) was considerably higher in Wanshan than in the other three locations. With an average PDI of 0.096 μg/kg bw/day (range, 0.015–0.45 μg/kg bw/day), approximately 34% of the inhabitants in Wanshan exceeded the reference dose of 0.1 μg/kg bw/day established by the U.S. Environmental Protection Agency. The PDI of MeHg for residents in the three other locations were all well below 0.1 μg/kg bw/day (averages from 0.017 to 0.023 μg/kg bw/day, with a maximum of 0.095 μg/kg bw/day). In all four areas, rice consumption accounted for 94–96% of the PDI of MeHg. Conclusion We found that rice consumption is by far the most important MeHg exposure route; however, most of the residents (except those in Hg-mining areas) have low PDIs of MeHg.


Journal of Geophysical Research | 2010

Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow

Xuewu Fu; Xinbin Feng; Gan Zhang; Weihai Xu; Xiangdong Li; Hen Yao; Peng Liang; Jun Li; Jonas Sommar; Runsheng Yin; Na Liu

Using R/V Shiyan 3 as a sampling platform, measurements of gaseous elemental mercury (GEM), surface seawater total mercury (THg), methyl mercury (MeHg), and dissolved gaseous mercury (DGM) were carried out above and in the South China Sea (SCS). Measurements were collected for 2 weeks (10 to 28 August 2007) during an oceanographic expedition, which circumnavigated the northern SCS from Guangzhou (Canton), Hainan Inland, the Philippines, and back to Guangzhou. GEM concentrations over the northern SCS ranged from 1.04 to 6.75 ng m(-3) (mean: 2.62 ng m(-3), median: 2.24 ng m(-3)). The spatial distribution of GEM was characterized by elevated concentrations near the coastal sites adjacent to mainland China and lower concentrations at stations in the open sea. Trajectory analysis revealed that high concentrations of GEM were generally related to air masses from south China and the Indochina peninsula, while lower concentrations of GEM were related to air masses from the open sea area, reflecting great Hg emissions from south China and Indochina peninsula. The mean concentrations of THg, MeHg, and DGM in surface seawater were 1.2 +/- 0.3 ng L-1, 0.12 +/- 0.05 ng L-1, and 36.5 +/- 14.9 pg L-1, respectively. In general, THg and MeHg levels in the northern SCS were higher compared to results reported from most other oceans/seas. Elevated THg levels in the study area were likely attributed to significant Hg delivery from surrounding areas of the SCS primarily via atmospheric deposition and riverine input, whereas other sources like in situ production by various biotic and abiotic processes may be important for MeHg. Average sea/air flux of Hg in the study area was estimated using a gas exchange method (4.5 +/- 3.4 ng m(-2) h(-1)). This value was comparable to those from other coastal areas and generally higher than those from open sea environments, which may be attributed to the reemission of Hg previously transported to this area.


Journal of Hazardous Materials | 2012

Remediation of mercury contaminated sites – A review

Jianxu Wang; Xinbin Feng; Christopher Anderson; Ying Xing; Lihai Shang

Environmental contamination caused by mercury is a serious problem worldwide. Coal combustion, mercury and gold mining activities and industrial activities have led to an increase in the mercury concentration in soil. The objective of this paper is to present an up-to-date understanding of the available techniques for the remediation of soil contaminated with mercury through considering: mercury contamination in soil, mercury speciation in soil; mercury toxicity to humans, plants and microorganisms, and remediation options. This paper describes the commonly employed and emerging techniques for mercury remediation, namely: stabilization/solidification (S/S), immobilization, vitrification, thermal desorption, nanotechnology, soil washing, electro-remediation, phytostabilization, phytoextraction and phytovolatilization.


Science of The Total Environment | 2008

Mercury pollution in Guizhou, Southwestern China - An overview

Xinbin Feng; Guangle Qiu

Mercury (Hg) is a global pollutant and poses a worldwide concern due to its high toxicity. Guizhou province is recognized as a heavily Hg-polluted area in China due to both the special geochemical background and human activities. Here an integrated overview of current knowledge on the behavior of Hg in environments, as well as human health risk with respect to Hg contaminations in Guizhou was presented. Two key anthropogenic Hg emission sources in Guizhou were coal combustion and metals smelting, which dominantly contributed to the high levels of Hg in local ecosystems and high fluxes of Hg deposition. The annual Hg emission from anthropogenic sources ranged between 22.6 and 55.5 t, which was about 6.3-10.3% of current total Hg emissions in China. Meanwhile, Hg Hg-enriched soil in the province serves an important natural Hg emission source to the ambient air. The local environment of Hg mining and zinc smelting areas are seriously contaminated with Hg. It is demonstrated that rice growing in Hg Hg-contaminated soil can accumulate methylmercury (MeHg) to a level to pose health threat to local inhabitants whose staple food is rice. Local inhabitants in Hg mining areas are exposed to Hg through inhalation of Hg vapor and consumption of rice with high level of MeHg. Rice intake is indeed the main MeHg exposure pathway to local inhabitants in Hg mining areas in Guizhou, which is contrary to the general point of view that fish and fish products are the main pathway of MeHg exposure to humans.


Journal of Agricultural and Food Chemistry | 2008

Methylmercury Accumulation in Rice (Oryza sativa L.) Grown at Abandoned Mercury Mines in Guizhou, China

Guangle Qiu; Xinbin Feng; Ping Li; Shaofeng Wang; Guanghui Li; Lihai Shang; Xuewu Fu

Mercury is a global pollutant that can transform into methylmercury, a highly toxic and bioaccumulative organic form. Previous surveys have shown that fish is the main source of human methylmercury exposure, whereas most other food products have an average value below 20 microg/kg and primarily in the inorganic form. This paper reports that methylmercury in rice (Oryza sativa L.) grown at abandoned mercury mining areas contained levels >100 microg/kg in its edible portion and proved to be 10-100 times higher than other crop plants. The daily adult intake of methylmercury through rice consumption causes abnormally high methylmercury exposure to humans. The results demonstrate that rice is a methylmercury bioaccumulative plant and the main methylmercury source for human exposure in the areas studied.


Atmospheric Environment | 2001

Intercomparison of methods for sampling and analysis of atmospheric mercury species

John Munthe; Ingvar Wängberg; Nicola Pirrone; Å. Iverfeldt; R. Ferrara; Ralf Ebinghaus; Xinbin Feng; Katarina Gårdfeldt; Gerald J. Keeler; E. Lanzillotta; S. E. Lindberg; J Lu; Yaacov Mamane; Eric Prestbo; S.R. Schmolke; William H. Schroeder; Jonas Sommar; Francesca Sprovieri; Robert K. Stevens; W Stratton; Gürdal Tuncel; A Urba

An intercomparison for sampling and analysis of atmospheric mercury species was held in Tuscany, June 1998. Methods for sampling and analysis of total gaseous mercury (TGM), reactive gaseous mercury (RGM) and total particulate mercury (TPM) were used in parallel sampling over a period of 4 days. The results show that the different methods employed for TGM compared well whereas RGM and TPM showed a somewhat higher variability. Measurement results of RGM and TPM improved over the time period indicating that activities at the sampling site during set-up and initial sampling affected the results. Especially the TPM measurement results were affected. Additional parallel sampling was performed for two of the TPM methods under more controlled conditions which yielded more comparable results.


Science of The Total Environment | 2012

A review of studies on atmospheric mercury in China

Xuewu Fu; Xinbin Feng; Jonas Sommar; Shaofeng Wang

Due to the fast developing economy, mercury (Hg) emissions to the atmosphere from Chinese mainland have increased rapidly in recent years. Consequently, this issue has received a considerable attention internationally. This paper reviews the current understanding of and knowledge on atmospheric Hg emissions, distribution and transport in China. The magnitude of Hg emissions to the atmosphere from Chinese anthropogenic sources has been estimated to be in the range of 500-700 tons per year, whereby comprising a significant proportion of the globe total anthropogenic emissions. Emissions of Hg from natural surfaces including bare soil, water, and vegetation covered soil tend in a comparison to be higher in China than in Europe and North America, indicating the importance of this source category. Atmospheric Hg exhibits a significant concentration variability among urban, semi-remote, and remote areas. Total Gaseous Mercury (TGM) concentrations in urban areas of China were often 1.5 - 5 folds higher compared to the corresponding settings in North America and Europe. In turn, particulate mercury (PHg) concentrations in urban areas of China were up to two orders of magnitude higher compared to North America and Europe. Atmospheric observations made at strictly remote sites in China also include the presence of occasional high concentrations of TGM, and the more short-lived fractions PHg and Reactive Gaseous Mercury (RGM). Accordingly, Hg deposition fluxes tended to be higher in China, with remote areas and urban areas being 1-2 times and 1-2 magnitude higher than those in North America and Europe, respectively.


Atmospheric Environment | 2001

Atmospheric mercury distribution in Northern Europe and in the Mediterranean region

Ingvar Wängberg; John Munthe; Nicola Pirrone; Å. Iverfeldt; E. Bahlman; P. Costa; Ralf Ebinghaus; Xinbin Feng; R. Ferrara; Katarina Gårdfeldt; H. Kock; E. Lanzillotta; Yaacov Mamane; F. Mas; E. Melamed; Y. Osnat; Eric Prestbo; Jonas Sommar; S.R. Schmolke; G. Spain; Francesca Sprovieri; Gürdal Tuncel

Mercury species in air have been measured at five sites in Northwest Europe and at five coastal sites in the Mediterranean region during measurements at four seasons. Observed concentrations of total gaseous mercury (TGM), total particulate mercury (TPM) and reactive gaseous mercury (RGM) were generally slightly higher in the Mediterranean region than in Northwest Europe. Incoming clean Atlantic air seems to be enriched in TGM in comparison to air in Scandinavia. Trajectory analysis of events where high concentrations of TPM simultaneously were observed at sites in North Europe indicate source areas in Central Europe and provide evidence of transport of mercury on particles on a regional scale.

Collaboration


Dive into the Xinbin Feng's collaboration.

Top Co-Authors

Avatar

Guangle Qiu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lihai Shang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuewu Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ping Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haiyu Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Meng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhonggen Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jonas Sommar

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Runsheng Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge