Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xing Cheng is active.

Publication


Featured researches published by Xing Cheng.


Journal of Materials Chemistry | 2017

Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism

Lei Yan; Hua Lan; Haoxiang Yu; Shangshu Qian; Xing Cheng; Nengbing Long; Ruifeng Zhang; Miao Shui; Jie Shu

In this study, WNb12O33 with different morphologies were fabricated using various sample collectors through a facile electrospinning method. The WNb12O33 nanorods (NR-WNb12O33) were synthesized using a rounded roller as the sample collector, and the WNb12O33 nanowires (NW-WNb12O33) were prepared using a stainless steel net as a sample collector for the first time. The possible formation process of different morphologies may depend on the self-aggregation of the precursor. Evaluated as a lithium storage anode, NW-WNb12O33 exhibited higher reversible capacity, longer cycle life, and superior rate performance than NR-WNb12O33. Even when cycled at 700 mA g−1, NW-WNb12O33 could retain capacity retention as high as 86.1% after 700 cycles (only 78.9% for NR-WNb12O33). Moreover, the structural change and lithium storage mechanism were studied via in situ X-ray diffraction. It was found that lithium ions insert into the WNb12O33 structure via three steps, and the total volume change is only 1.55%. In addition, in situ observation results also demonstrated that the lithiation/delithiation behavior of NW-WNb12O33 is highly reversible, which makes it a potential candidate for probable high-rate and long-life anode for lithium-ion batteries.


ACS Applied Materials & Interfaces | 2017

High-Rate Long-Life Pored Nanoribbon VNb9O25 Built by Interconnected Ultrafine Nanoparticles as Anode for Lithium-Ion Batteries

Shangshu Qian; Haoxiang Yu; Lei Yan; Haojie Zhu; Xing Cheng; Ying Xie; Nengbing Long; Miao Shui; Jie Shu

VNb9O25 is a novel lithium storage material, which has not been systematically investigated so far. Via electrospinning technology, VNb9O25 samples with two different morphologies, pored nanoribbon and rodlike nanoparticles, are prepared in relatively low temperature and time-saving calcination conditions. It is found that the formation process of different morphologies depends on the control of self-aggregation of the precursor by using different sample collectors. Compared with rodlike VNb9O25 (RL-VNb9O25), pored nanoribbon VNb9O25 (PR-VNb9O25) can deliver a higher specific capacity, lower capacity loss, and better cyclability. Even cycled at 1000 mA g-1, the reversible capacity of 132.3 mAh g-1 is maintained by PR-VNb9O25 after 500 cycles, whereas RL-VNb9O25 only exhibits a capacity of 102.7 mAh g-1. The enhancement should be attributed to the pored nanoribbon structure with large specific surface area and shorter pathway for lithium ions transport. Furthermore, the lithium ions insertion/extraction process is verified from refinement results of in situ X-ray diffraction data, which is associated with a lithium occupation process in type III and VI cavities through tunnels I, II, and III. In addition, high structural stability and electrochemical reversibility are also demonstrated. All of these advantages suggest that PR-VNb9O25 is a promising anode material for lithium-ion batteries.


Journal of Materials Chemistry | 2018

K2Nb8O21 nanotubes with superior electrochemical performance for ultrastable lithium storage

Xing Cheng; Haojie Zhu; Haoxiang Yu; Wuquan Ye; Runtian Zheng; Tingting Liu; Na Peng; Miao Shui; Jie Shu

High-performance lithium-ion batteries are important for developing sustainable energy. However, there is a shortage of advanced energy storage materials. K2Nb8O21 is a novel material for lithium storage which has not been investigated systematically. In this work, K2Nb8O21 nanotubes and microtubes were prepared facilely using electrospinning under different conditions. As an anode host, K2Nb8O21 nanotubes showed better long-term cycling, superior rate performance, and higher structural stability compared with microtubes. Electrochemical results showed that K2Nb8O21 nanotubes delivered a considerable lithium storage capacity of 213 mA h g−1 after 5000 cycles at 1000 mA g−1 with outstanding capacity retention of 80.3%. The nano/micro structured host could increase Li-ion transport to render high-rate capability and excellent cycling stability. In situ XRD, ex situ XPS and ex situ TEM revealed K2Nb8O21 nanotubes had high structural stability and reversibility as lithium storage anode materials. All of these advantages suggest that K2Nb8O21 nanotubes may be promising anode material for lithium-ion batteries.


Journal of Materials Chemistry | 2018

Rapid and durable electrochemical storage behavior enabled by V4Nb18O55 beaded nanofibers: a joint theoretical and experimental study

Shangshu Qian; Haoxiang Yu; Xing Cheng; Runtian Zheng; Haojie Zhu; Tingting Liu; Miao Shui; Ying Xie; Jie Shu

A relatively thermodynamically stable phase in the V2O5–Nb2O5 system, namely, V4Nb18O55, was prepared and then structurally and electrochemically characterized. Theoretical calculations show that the crystal structure of V4Nb18O55 allows the rapid diffusion of lithium ions in three directions in the open structure, which ensures a high diffusion coefficient at crystal structure horizon. V4Nb18O55 synthesized by a sol–gel method exhibited a reversible specific capacity of 226.8 mA h g−1. A significant enhancement in electrochemical properties can be delivered by the electrospun V4Nb18O55 beaded nanofibers due to the shorter pathways in the spheres, leading to an improved capacity of 251.6 mA h g−1 between 1 V and 3 V with 92.54% capacity retention. According to the results of the theoretical calculations, we can find that electrochemical energy storage in V4Nb18O55 arises from the occupation by lithium ions in 8q, 4g, 4h and 4j sites in the structure. The in situ X-ray diffraction study further confirmed that the open structure of V4Nb18O55 not only ensures the highly reversible storage and transport of lithium ions in these cavities, but also provides a stable framework during repeated charge/discharge cycles.


ACS Applied Materials & Interfaces | 2018

Sol–Gel Synthesis and in Situ X-ray Diffraction Study of Li3Nd3W2O12 as a Lithium Container

Minghe Luo; Haoxiang Yu; Xing Cheng; Wuquan Ye; Haojie Zhu; Tingting Liu; Na Peng; Miao Shui; Jie Shu

In this work, garnet-framework Li3Nd3W2O12 as a novel insertion-type anode material has been prepared via a facile sol-gel method and examined as a lithium container for lithium ion batteries (LIBs). Li3Nd3W2O12 shows a charge capacity of 225 mA h g-1 at 50 mA g-1, and with the current density increasing up to 500 mA g-1, the charge capacity can still be maintained at 186 mA h g-1. After cycling at 500 mA g-1 for 500 cycles, Li3Nd3W2O12 retains about 85% of its first charge capacity changed from 190.2 to 161 mA h g-1. Furthermore, in situ X-ray diffraction technique is adopted for the understanding of the insertion/extraction mechanism of Li3Nd3W2O12. The full-cell configuration LiFePO4/Li3Nd3W2O12 is also assembled to evaluate the potential of Li3Nd3W2O12 for practical application. These results show that Li3Nd3W2O12 is such a promising anode material for LIBs with excellent electrochemical performance and stable structure.


Nano Energy | 2017

TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries

Haoxiang Yu; Hua Lan; Lei Yan; Shangshu Qian; Xing Cheng; Haojie Zhu; Nengbing Long; Miao Shui; Jie Shu


Ceramics International | 2017

PVP derived C/N coated SrLi2Ti6O14 as high performance anode material for lithium ion battery

Yanyu Zhang; Shangshu Qian; Haojie Zhu; Xing Cheng; Wuquan Ye; Haoxiang Yu; Lei Yan; Miao Shui; Jie Shu


Electrochimica Acta | 2018

Effect of lithium-site doping on enhancing the lithium storage performance of SrLi 2 Ti 6 O 14

Na Peng; Haojie Zhu; Xing Cheng; Haoxiang Yu; Tingting Liu; Runtian Zheng; Jundong Zhang; Miao Shui; Jie Shu


Ceramics International | 2018

Electrospinning of hierarchical structure Nd10W22O81 nanowires as high performance lithium storage anode for rechargeable batteries

Ziwei Chen; Xing Cheng; Nengbing Long; Haojie Zhu; Haoxiang Yu; Wuquan Ye; Runtian Zheng; Miao Shui; Jie Shu


Ceramics International | 2018

Improving electrochemical performance by Na, Mg and Al-ion doping of PbLi 2 Ti 6 O 14 as anode materials for Li-ion batteries

Runtian Zheng; Wenchao Bi; Haoxiang Yu; Xing Cheng; Haojie Zhu; Na Peng; Tingting Liu; Wuquan Ye; Jie Shu

Collaboration


Dive into the Xing Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge