Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xing Han is active.

Publication


Featured researches published by Xing Han.


Chemical Research in Toxicology | 2012

Renal Elimination of Perfluorocarboxylates (PFCAs)

Xing Han; Diane L. Nabb; Mark H. Russell; Gerald L. Kennedy; Robert W. Rickard

Sex-, species-, and chain length-dependent renal elimination is the hallmark of mammalian elimination of perfluorocarboxylates (PFCAs) and has been extensively studied for almost 30 years. In this review, toxicokinetic data of PFCAs (chain lengths ranging from 4 to 10) in different species are compared with an emphasis on their relevance to renal elimination. PFCAs vary in their affinities to bind to serum albumins in plasma, which is an important factor in determining the renal clearance of PFCAs. PFCA-albumin binding has been well characterized and is summarized in this review. The mechanism of the sex-, species-, and chain length-dependent renal PFCA elimination is a research area that has gained continuous interest since the beginning of toxicological studies of PFCAs. It is now recognized that organic anion transport proteins play a key role in PFCA renal tubular reabsorption, a process that is sex-, species-, and chain length-dependent. Recent studies on the identification of PFCA renal transport proteins and characterization of their transport kinetics have greatly improved our understanding of the PFCA renal transport mechanism at the molecular level. A mathematical representation of this renal tubular reabsorption mechanism has been incorporated in physiologically based pharmacokinetic (PBPK) modeling of perfluorooctanoate (PFOA). Improvement of PBPK models in the future will require more accurate and quantitative characterization of renal transport pathways of PFCAs. To that end, a basolateral membrane efflux pathway for the reabsorption of PFCAs in the kidney is discussed in this review, which could provide a future research direction toward a better understanding of the mechanisms of PFCA renal elimination.


Toxicological Sciences | 2010

Characterization of Cellular Uptake of Perfluorooctanoate via Organic Anion Transporting Polypeptide 1A2, Organic Anion Transporter 4, and Urate Transporter 1 for Their Potential Roles in Mediating Human Renal Reabsorption of Perfluorocarboxylates

Ching-Hui Yang; Kyle P. Glover; Xing Han

It has been hypothesized that human renal apical membrane transporters play a key role in human renal reabsorption of perfluorooctanoate (PFO), which contributes to the long half-life of PFO in humans. In the present study, PFO uptake kinetics of human organic anion-transporting polypeptide (OATP) 1A2, organic anion transporter (OAT) 4, and urate transporter 1 (URAT1) in stably transfected cell lines was investigated. OAT4 and URAT1, but not OATP1A2, were shown to mediate saturable PFO cellular uptake. OAT4-mediated PFO uptake was stimulated by a low extracellular pH, which was evidenced as a lower Michaelis constant (K(m)) at pH 6 (172.3 ± 45.9μM) than that at pH 7.4 (310.3 ± 30.2μM). URAT1-mediated PFO uptake was greatly enhanced by an outward Cl(-) gradient, and its K(m) value was determined to be 64.1 ± 30.5μM in the absence of extracellular Cl(-). The inhibition of OATP1A2- or OAT4-mediated estrone-3-sulfate uptake or URAT1-mediated urate uptake has been compared for linear perfluorocarboxylates (PFCs) with carbon chain lengths from 4 to 12. A clear chain length-dependent inhibition was observed, suggesting that PFCs in general are substrates of OAT4 and URAT1 but with different levels of affinities to the transporters depending on their chain length. Our results suggest that OAT4 and URAT1 are key transporters in renal reabsorption of PFCs in humans and, as a result, may contribute significantly to the long half-life of PFO in humans.


Toxicology Letters | 2009

Organic anion transporting polypeptide (Oatp) 1a1-mediated perfluorooctanoate transport and evidence for a renal reabsorption mechanism of Oatp1a1 in renal elimination of perfluorocarboxylates in rats

Ching-Hui Yang; Kyle P. Glover; Xing Han

Organic anion transporting polypeptide (Oatp) 1a1 has been hypothesized to play a key role in rat renal reabsorption of perfluorooctanoate (PFO). We have investigated PFO uptake kinetics in Chinese Hamster Ovary (CHO) cells that have been stably transfected with the cDNA encoding Oatp1a1. The Oatp1a1-expressing CHO cells have been validated by their Oatp1a1 gene expression, estrone-3-sulfate (E3S) uptake kinetics, and the correlation between Oatp1a1 gene expression and E3S uptake activity that were both induced by the treatment of sodium butyrate. Oatp1a1-mediated PFO uptake underwent a saturable process with a K(m) value of 162.2+/-20.2microM, which was effectively inhibited by known Oatp1a1 substrates sulfobromophthalein and taurocholate, and a major flavonoid in grapefruit juice, naringin. The inhibition of Oatp1a1-mediated E3S uptake has been compared for linear perfluorocarboxylates with carbon chain lengths ranged from 4 to 12. There was no apparent inhibition by perfluorobutanoate and perfluoropentanoate at 1mM. Inhibition was observed for perfluorohexanoate at 1mM and the level of inhibition increased as the increase of the chain length up to perfluorodecanoate. The values of apparent inhibition constant (K(i,app)) were determined for perfluorocarboxylates with chain lengths between 6 and 10. The log values of K(i,app) exhibited a negative linear relationship to the chain lengths and a positive linear relationship to the log values of the total clearance of perfluorocarboxylates in male rats. This in vitro-to-in vivo correlation strongly supports a tubular reabsorptive role of Oatp1a1 in rat renal elimination of perfluorocarboxylates. Due to the sex-dependent expression of Oatp1a1 in rat kidney, Oatp1a1-mediated tubular reabsorption is suggested to be the mechanism for the sex-dependent renal elimination of PFO in rats.


Toxicology Letters | 2008

Uptake of perfluorooctanoate in freshly isolated hepatocytes from male and female rats

Xing Han; Ching-Hui Yang; Suzanne I. Snajdr; Diane L. Nabb; Robert T. Mingoia

Liver is a primary target organ for perfluorooctanoate (PFO, the deprotonated form of perfluorooctanoic acid, PFOA) distribution in both male and female rats. We studied the uptake of PFO in freshly isolated hepatocytes from male and female rats. We identified a non-saturable cell partitioning process for PFO using on-ice incubations. At 37 degrees C, hepatic uptake of PFO was composed of the non-saturable partition as well as a saturable, active uptake process. The K(m) and V(max) values for the active uptake process were 88.0 +/- 9.1 microM and 5.61 +/- 0.88 nmol/(min 10(6)cells), respectively, for male rat hepatocytes, and 76.1 +/- 12.0 microM and 3.59 +/- 0.29 nmol/(min 10(6)cells), respectively, for female rat hepatocytes. The values of PFO clearance by active uptake were 64.8 +/- 15.7 and 47.6 +/- 4.7 microL/(min 10(6)cells) for male and female rat hepatocytes, respectively. The active uptake of PFO in rat hepatocytes was inhibited by sulfobromophthalein, a known substrate of organic anion transporting polypeptides, with apparent inhibition constants of 85.9 +/- 25.1 and 29.3 +/- 19.2 microM in male and female rat hepatocytes, respectively. When serum albumin was added to the incubations, PFO hepatic uptake rates were reduced, but were proportional to the unbound fractions of PFO.


Environmental Science & Technology | 2014

Intra- and interlaboratory reliability of a cryopreserved trout hepatocyte assay for the prediction of chemical bioaccumulation potential

Kellie A. Fay; Robert T. Mingoia; Ina Goeritz; Diane L. Nabb; Alex D. Hoffman; Barbra D. Ferrell; Heather M. Peterson; John W. Nichols; Helmut Segner; Xing Han

Measured rates of intrinsic clearance determined using cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions for fish. To date, however, the intra- and interlaboratory reliability of this procedure has not been determined. In the present study, three laboratories determined in vitro intrinsic clearance of six reference compounds (benzo[a]pyrene, 4-nonylphenol, di-tert-butyl phenol, fenthion, methoxychlor and o-terphenyl) by conducting substrate depletion experiments with cryopreserved trout hepatocytes from a single source. O-terphenyl was excluded from the final analysis due to nonfirst-order depletion kinetics and significant loss from denatured controls. For the other five compounds, intralaboratory variability (% CV) in measured in vitro intrinsic clearance values ranged from 4.1 to 30%, while interlaboratory variability ranged from 27 to 61%. Predicted bioconcentration factors based on in vitro clearance values exhibited a reduced level of interlaboratory variability (5.3-38% CV). The results of this study demonstrate that cryopreserved trout hepatocytes can be used to reliably obtain in vitro intrinsic clearance of xenobiotics, which provides support for the application of this in vitro method in a weight-of-evidence approach to chemical bioaccumulation assessment.


Current protocols in immunology | 2015

Determination of Metabolic Stability Using Cryopreserved Hepatocytes from Rainbow Trout (Oncorhynchus mykiss)

Kellie A. Fay; Diane L. Nabb; Robert T. Mingoia; Ina Bischof; John W. Nichols; Helmut Segner; Karla Johanning; Xing Han

Trout provide a relatively easy source of hepatocytes that can be cryopreserved and used for a range of applications including toxicity testing and determination of intrinsic clearance. Standard protocols for isolating, cryopreserving, and thawing rainbow trout hepatocytes are described, along with procedures for using fresh or cryopreserved hepatocytes to assess metabolic stability of xenobiotics in fish by means of a substrate depletion approach. Variations on these methods, troubleshooting tips, and directions for use of extrapolation factors to express results in terms of in vivo intrinsic clearance are included. These protocols have been developed for rainbow trout, but can be adapted to other fish species with appropriate considerations.


Toxicology Letters | 2014

Protein kinase C-activating tumor promoters modulate the DNA damage response in UVC-irradiated TK6 cells.

Kyle P. Glover; Lauren K. Markell; E. Maria Donner; Xing Han

12-O-Tetradecanoylphorbol-13-acetate (TPA) is a non-genotoxic tumor promoter that dysregulates the protein kinase C (PKC) pathway and causes variable cellular responses to DNA damage in different experimental models. In the present study, we pretreated human lymphoblastoid TK6 cells (wild-type p53) for 72 h with TPA, and five other PKC-activating tumor promoters, to determine how sustained exposure to these chemicals modulates key DNA damage response (DDR) endpoints induced by UVC-irradiation. Here we show that pre-treatment with PKC-activating tumor promoters augmented the sensitivity of TK6 cells to UVC-irradiation characterized by a synergistic increase in apoptosis compared to that induced by either stress alone. In addition, high residual levels of the DNA damage repair signal γH2AX was observed in tumor promoter treated cells indicating a delayed DDR recovery. NH32 (p53-null, isogenic to TK6) cells were resistant to the synergistic effects on apoptosis implicating p53 as a central mediator of the DDR modulating effects. In addition, analysis of p53 target genes in TPA-pre-treated TK6 cells revealed a significant modulation of UVC-induced gene expression that supported a shift toward a pro-apoptotic phenotype. Therefore, sustained exposure to tumor promoting agents modulates the UVC-induced DDR in TK6 cells, which may represent important synergistic interactions that occur during tumor promotion.


PLOS ONE | 2015

Synergistic Gene Expression Signature Observed in TK6 Cells upon Co-Exposure to UVC-Irradiation and Protein Kinase C-Activating Tumor Promoters

Kyle P. Glover; Zhongqiang Chen; Lauren K. Markell; Xing Han

Activation of stress response pathways in the tumor microenvironment can promote the development of cancer. However, little is known about the synergistic tumor promoting effects of stress response pathways simultaneously induced in the tumor microenvironment. Therefore, the purpose of this study was to establish gene expression signatures representing the interaction of pathways deregulated by tumor promoting agents and pathways induced by DNA damage. Human lymphoblastoid TK6 cells were pretreated with the protein kinase C activating tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and exposed to UVC-irradiation. The time and dose-responsive effects of the co-treatment were captured with RNA-sequencing (RNA-seq) in two separate experiments. TK6 cells exposed to both TPA and UVC had significantly more genes differentially regulated than the theoretical sum of genes induced by either stress alone, thus indicating a synergistic effect on global gene expression patterns. Further analysis revealed that TPA+UVC co-exposure caused synergistic perturbation of specific genes associated with p53, AP-1 and inflammatory pathways important in carcinogenesis. The 17 gene signature derived from this model was confirmed with other PKC-activating tumor promoters including phorbol-12,13-dibutyrate, sapintoxin D, mezerein, (-)-Indolactam V and resiniferonol 9,13,14-ortho-phenylacetate (ROPA) with quantitative real-time PCR (QPCR). Here we show a novel gene signature that may represent a synergistic interaction in the tumor microenvironment that is relevant to the mechanisms of chemical induced tumor promotion.


Chemical Research in Toxicology | 2014

Endocrine disruption screening by protein and gene expression of vitellogenin in freshly isolated and cryopreserved rainbow trout hepatocytes.

Lauren K. Markell; Robert T. Mingoia; Heather M. Peterson; Jianhong Yao; Stephanie M. Waters; James P. Finn; Diane L. Nabb; Xing Han

Xenobiotics may activate the estrogen receptor, resulting in alteration of normal endocrine functions in animals and humans. Consequently, this necessitates development of assay end points capable of identifying estrogenic xenobiotics. In the present study, we screened the potential estrogenicity of chemicals via their ability to induce vitellogenin (VTG) expression in cultured primary hepatocytes from male trout. A routine method for VTG detection measures the secretion of the protein by enzyme-linked immunosorbent assay (ELISA) in freshly isolated trout hepatocytes. However, this lengthy (6 days) culturing procedure requires that hepatocyte isolation is performed each time the assay is run. We optimized this methodology by investigating the utility of cryopreserved hepatocytes, shortening the incubation time, performing a quantitative real-time PCR (qPCR) method for VTG quantification, and verifying the model system with reference chemicals 17β-estradiol, estrone, diethylstilbestrol, hexestrol, genistein, and a negative control, corticosterone. To test the performance of both freshly isolated and cryopreserved hepatocytes, mRNA was collected from hepatocytes following 24 h treatment for VTG gene expression analysis, whereas cell culture media was collected for a VTG ELISA 96 h post-treatment. EC50 values were obtained for each reference chemical except for corticosterone, which exhibited no induction of VTG gene or protein level. Our results show linear concordance between ELISA and qPCR detection methods. Although there was approximately 50% reduction in VTG inducibility following cryopreservation, linear concordance of EC50 values was found between freshly isolated and cryopreserved hepatocytes, indicating that cryopreservation does not alter the functional assessment of estrogen receptor activation and therefore VTG expression. These studies demonstrate that qPCR is a sensitive and specific method for detecting VTG gene expression that can be used together with cryopreserved trout hepatocytes for screening estrogenic chemicals, resulting in a reduction of the time required to perform the assay and enabling greater access to the model system through the approach of cryopreservation.


Drug Metabolism and Disposition | 2011

Comparative Metabolism of 1,2,3,3,3-Pentafluoropropene in Male and Female Mouse, Rat, Dog, and Human Liver Microsomes and Cytosol and Male Rat Hepatocytes via Oxidative Dehalogenation and Glutathione S-Conjugation Pathways

Xing Han; Bogdan Szostek; Ching-Hui Yang; Steve F. Cheatham; Robert T. Mingoia; Diane L. Nabb; Shawn A. Gannon; Matthew W. Himmelstein; Gary W. Jepson

In vitro metabolism of 1,2,3,3,3-pentafluoropropene (PFP) was investigated in the present study. PFP was metabolized via cytochrome P450-catalyzed oxidative dehalogenation in liver microsomes and glutathione transferase (GST)-catalyzed conjugation in liver microsomes and cytosol. Two oxidation products, 2,3,3,3-tetrafluoropropionaldehyde (TPA) and 3,3,3-trifluoropyruvaldehyde (TFPA), and two GSH conjugates, S-(2,3,3,3-tetrafluoropropenyl)-GSH (TFPG) and S-(1,2,3,3,3-pentafluoropropyl)-GSH (PFPG) were identified. Enzyme kinetic parameters for the formation of TFPA, TFPG, and PFPG were obtained in male and female rat, mouse, dog, and human liver microsomes and cytosol and were confirmed using freshly isolated male rat hepatocytes. For the TFPA pathway, dog microsomes exhibited much larger Km values than rat, mouse, and human microsomes. Sex differences in the rates of metabolism within a given species were minor and generally were less than 2-fold. Across the species, liver microsomes were the primary subcellular fraction for GSH S-conjugation and the apparent reaction rates for the formation of TFPG were much greater than those for PFPG in liver microsomes. PFPG was unstable and had a half-life of approximately 3.9 h in a phosphate buffer (pH 7.4 and 37°C). The intrinsic clearance values for the formation of TFPA were much greater than those for the formation of GSH S-conjugates, suggesting that cytochrome P450-mediated oxidation is the primary pathway for the metabolism of PFP at relatively low PFP concentrations. Because saturation of the GST-mediated reactions was not reached at the highest possible PFP concentration, GSH S-conjugation may become a much more important pathway at higher PFP concentrations (relative to the Km for TFPA).

Collaboration


Dive into the Xing Han's collaboration.

Top Co-Authors

Avatar

John W. Nichols

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kellie A. Fay

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge