Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xingbin Yin is active.

Publication


Featured researches published by Xingbin Yin.


Journal of Ethnopharmacology | 2015

Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review

Longfei Lin; Boran Ni; Hongmei Lin; Miao Zhang; Xuechun Li; Xingbin Yin; Changhai Qu; Jian Ni

Abstract Ethnopharmacological relevance Polygonum multiflorum Thunb., which is known as Heshouwu (何首乌 in Chinese) in China. It is traditionally valued and reported for hair-blacking, liver and kidney-tonifying and anti-aging effects as well as low toxicity. The aim of this review is to provide comprehensive information on the botany, traditional uses, phytochemistry, pharmacological research and toxicology of Polygonum multiflorum, based on the scientific literature. Moreover, trends and perspectives for future investigation of this plant are discussed. It will build up a new foundation for further study on Polygonum multiflorum. Materials and methods A systematic review of the literature on Polygonum multiflorum was performed using several resources, including classic books on Chinese herbal medicine and various scientific databases, such as PubMed, SciFinder, the Web of Science, Science Direct, China Knowledge Resource Integrated (CNKI). Results Polygonum multiflorum is widely distributed throughout the world and has been used as a traditional medicine for centuries in China. The ethnomedical uses of Polygonum multiflorum have been recorded in many provinces of China and Japan for nine species of adulterants in six families. More than 100 chemical compounds have been isolated from this plant, and the major components have been determined to be stilbenes, quinones, flavonoids and others. Crude extracts and pure compounds of this plant are used as effective agents in pre-clinical and clinical practice due to their anti-aging, anti-hyperlipidaemia, anti-cancer and anti-inflammatory effects and to promote immunomodulation, neuroprotection, and the curing of other diseases. However, these extracts can also lead to hepatotoxicity, nephrotoxicity and embryonic toxicity. Pharmacokinetic studies have demonstrated that the main components of Polygonum multiflorum, such as 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucopyranoside and emodin are distributed among many organs and tissues. Conclusion Therapeutic potential of Polygonum multiflorum has been demonstrated in the conditions like Alzheimer׳s disease, Parkinson׳s disease, hyperlipidaemia, inflammation and cancer, which is attributed to the presence of various stilbenes, quinones, flavonoids, phospholipids and other compounds in the drug. On the other hand, the adverse effects (hepatotoxicity, nephrotoxicity, and embryonic toxicity) of this plant were caused by the quinones, such as emodin and rhein. Thus more pharmacological and toxicological mechanisms on main active compounds are necessary to be explored, especially the combined anthraquinones (Emodin-8-O-β-d-glucopyranoside, Physcion-8-O-β-d-glucopyranoside, etc.) and the variety of stilbenes.


Phytotherapy Research | 2016

Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics

Xiaoxv Dong; Jing Fu; Xingbin Yin; Sali Cao; Xuechun Li; Longfei Lin; Huyiligeqi; Jian Ni

Emodin is a natural anthraquinone derivative that occurs in many widely used Chinese medicinal herbs, such as Rheum palmatum, Polygonum cuspidatum and Polygonum multiflorum. Emodin has been used as a traditional Chinese medicine for over 2000 years and is still present in various herbal preparations. Emerging evidence indicates that emodin possesses a wide spectrum of pharmacological properties, including anticancer, hepatoprotective, antiinflammatory, antioxidant and antimicrobial activities. However, emodin could also lead to hepatotoxicity, kidney toxicity and reproductive toxicity, particularly in high doses and with long‐term use. Pharmacokinetic studies have demonstrated that emodin has poor oral bioavailability in rats because of its extensive glucuronidation. This review aims to comprehensively summarize the pharmacology, toxicity and pharmacokinetics of emodin reported to date with an emphasis on its biological properties and mechanisms of action. Copyright


Journal of Hazardous Materials | 2015

A novel method to analyze hepatotoxic components in Polygonum multiflorum using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry

Longfei Lin; Hongmei Lin; Miao Zhang; Boran Ni; Xingbin Yin; Changhai Qu; Jian Ni

Polygonum multiflorum, called Heshouwu in China, is a traditional Chinese medicine used to treat various diseases. However, the administration of P. multiflorum (PM) and P. multiflorum Praeparata (PMP) causes numerous adverse effects. This study sought to analyze the toxic components of PM using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), and their hepatotoxicity in L02 human liver cells. Toxicity was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) leakage, and liver enzyme secretion (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) assays. Furthermore, UPLC-Q-TOF/MS, Progenesis QI, and Makerlynx XS software analyses were used to differentiate extracts and analyze the toxic components. The order of toxicity was P. multiflorum ethanol extract (PME)>P. multiflorum water extract (PMW)>P. multiflorum Praeparata ethanol extract (PMPE)>P. multiflorum Praeparata water extract (PMPW), which was determined by MTT assay, LDH leakage, and liver enzyme secretion levels. The analysis methods suggest that PM toxicity may be associated with anthraquinone, emodin-O-(malonyl)-hex, emodin-O-glc, emodin, emodin-8-O-glc, emodin-O-(acetyl)-hex, and emodin-O-hex-sulphate. The toxic mechanisms of these components require further study.


RSC Advances | 2015

Types, principle, and characteristics of tandem high-resolution mass spectrometry and its applications

Longfei Lin; Hongmei Lin; Miao Zhang; Xiaoxv Dong; Xingbin Yin; Changhai Qu; Jian Ni

Tandem high-resolution mass spectrometry (THRMS) is an analytical technique that has arisen in recent years and is now widely used in pharmaceutical research and development (RD for example, for the identification of constituents in herbs and formulae, pharmacokinetics, omics, and drug degradation), food safety, environmental contamination and other research fields. Time of Flight (TOF) and Orbitrap are the most widely used mass analysers in THRMS, and the technical specifications vary among the different types of THRMS and even among the different manufacturers for a given type of analyser. In this article, we review the principle and functional characteristics of different types or models for THRMS and provide a brief description of its applications in the medical research, food safety, and environmental protection fields.


Biomedical Chromatography | 2012

Simultaneous determination and pharmacokinetic study of polyphyllin I, polyphyllin II, polyphyllin VI and polyphyllin VII in beagle dog plasma after oral administration of Rhizoma Paridis extracts by LC-MS-MS.

Xingbin Yin; Changhai Qu; Zhaoxia Li; Yujing Zhai; Sali Cao; Longfei Lin; Lijun Feng; Lei Yan; Jian Ni

For the first time, a rapid and specific LC-MS-MS method has been developed for the analysis of polyphyllin I, polyphyllin II, polyphyllin VI and polyphyllin VII in beagle dog plasma. The method was applied to study the pharmacokinetics of Rhizoma Paridis extracts containing polyphyllin I, polyphyllin II, polyphyllin VI and polyphyllin VII. The analysis was carried out on an Agilent Zorbax XDB-C(18) reversed-phase column (100 × 2.1 mm, 1.8 µm) by isocratic elution with acetonitrile and water (50:50, v/v). The flow rate was 0.25 mL/min. All analytes including internal standards were monitored by selected reaction monitoring with an electrospray ionization source. Linear responses were obtained for polyphyllin I, polyphyllin II, polyphyllin VI and polyphyllin VII ranging from 10 to 5000 ng/mL. The intra-and inter-day precisions (RSDs) were less than 6.66 and 9.15%. The extraction recovery ranged from 95.53 to 104.21% with RSD less than 8.69%. Stability studies showed that polyphyllin I, polyphyllin II, polyphyllin VI and polyphyllin VII were stable in preparation and analytical process. The validated method was successfully used to determine the concentration-time profiles of polyphyllin I, polyphyllin II, polyphyllin VI and polyphyllin VII.


Cellular Physiology and Biochemistry | 2017

Induction of Apoptosis in HepaRG Cell Line by Aloe-Emodin through Generation of Reactive Oxygen Species and the Mitochondrial Pathway

Xiaoxv Dong; Jing Fu; Xingbin Yin; Changhai Qu; Chunjing Yang; Huyiligeqi He; Jian Ni

Background/Aims: Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), an anthraquinone active compounds, is isolated from some traditional medicinal plants such as Rheum palmatum L. and Cassia occidentalis, which induce hepatotoxicity in rats. The aim of this study was to determine potential cytotoxic effects of aloe-emodin on HepaRG cells and to define the underlying mechanism. Methods: MTT was used to evaluate cell viability. Apoptotic cell death was analyzed via Annexin V-FITC/PI double staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were determined by flow cytometry, while the expression of apoptosis-related proteins was determined by Western blot analysis. Results: Treatment with aloe-emodin significantly reduced cell viability and induced apoptosis in HepaRG cells in a dose- and time-dependent manner. It provoked ROS generation and depolarization of MMP in HepaRG cells when compared with controls. Aloe-emodin dose-dependently increased release of mitochondrial cytochrome c, and levels of Fas, p53, p21, Bax/Bcl-2 ratio, as well as activation of caspase-3, caspase-8, caspase-9, and subsequent cleavage of poly(ADP-ribose)polymerase (PARP). It also induced S-phase cell cycle arrest by increasing the expression of p21 and cyclin E proteins while significantly decreasing the expression of cyclin A and CDK2. Conclusion: These results suggest that aloe-emodin inhibits cell proliferation and induces apoptosis in HepaRG cells, most probably through a mechanism involving both Fas death pathway and the mitochondrial pathway by generation of ROS. These findings underscore the need for risk assessment of human exposure to aloe-emodin.


BioMed Research International | 2017

Radix Bupleuri: A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology

Fude Yang; Xiaoxv Dong; Xingbin Yin; Wenping Wang; Longtai You; Jian Ni

Radix Bupleuri (Chaihu) has been used as a traditional medicine for more than 2000 years in China, Japan, Korea, and other Asian countries. Phytochemical studies demonstrated that this plant contains essential oils, triterpenoid saponins, polyacetylenes, flavonoids, lignans, fatty acids, and sterols. Crude extracts and pure compounds isolated from Radix Bupleuri exhibited various biological activities, such as anti-inflammatory, anticancer, antipyretic, antimicrobial, antiviral, hepatoprotective, neuroprotective, and immunomodulatory effects. However, Radix Bupleuri could also lead to hepatotoxicity, particularly in high doses and with long-term use. Pharmacokinetic studies have demonstrated that the major bioactive compounds (saikosaponins a, b2, c, and d) were absorbed rapidly in rats after oral administration of the extract of Radix Bupleuri. This review aims to comprehensively summarize the traditional uses, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics of Radix Bupleuri reported to date with an emphasis on its biological properties and mechanisms of action.


Biomedical Chromatography | 2013

Development and validation of a highly sensitive LC-ESI-MS/MS method for the determination of hyperoside in beagle dog plasma: application to a pharmacokinetic study.

Xingbin Yin; Zhaoxia Li; Yujing Zhai; Hui Zhang; Longfei Lin; Pei Yang; Sali Cao; Jin Zhang; Juanjuan Qi; Jingchen Tian; Jing Fu; Changhai Qu; Jian Ni

A highly sensitive, rapid assay method has been developed and validated for the analysis of hyperoside in beagle dog plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive-ion mode. The assay procedure involves extraction of hyperoside and ginsenoside Re (IS) from beagle dog plasma. Chromatographic separation was carried out on an Agilent Zorbax XDB-C18 (100 × 2.1 mm, 1.8 µm) column by isocratic elution with acetonitrile and water (50:50, v/v) at a flow rate of 0.25 mL/min with a total run time of 2.0 min. The MS/MS ion transitions monitored were 464.4 → 463.4 for hyperoside and 947.12 → 969.60 for IS. Linear responses were obtained for hyperoside ranging from 10 to 5000 ng/mL. The intra-and inter-day precisions (RSDs) were <5.38 and 3.39% and the extraction recovery ranged from 94.39 to 100.78% with an RSD <3.82%. Stability studies showed that hyperoside was stable in preparation and analytical process. The results indicated that the validated method was successfully used to determine the concentration-time profiles of hyperoside.


Frontiers in Pharmacology | 2017

A New Perspective on Liver Injury by Traditional Chinese Herbs Such As Polygonum multiflorum: The Geographical Area of Harvest As an Important Contributory Factor

Longfei Lin; Hui Li; Hongmei Lin; Miao Zhang; Changhai Qu; Lei Yan; Xingbin Yin; Jian Ni

Herbal medicine has been widely used in the treatment of various diseases; however, the adverse reactions cannot be ignored. Most previous studies have ignored the relationship between the factors of geographical areas/batches and toxicity. This study used Polygonum multiflorum (PM) as an example to analyze the relationship between the geographical areas/batches and toxicity and speculated on the hepatotoxicity-inducing components in PM based on high content screening, UHPLC-Q-TOF/MS and Progenesis QI software analysis. The results of the study show that the toxicity of PM was obviously different among the different geographical areas, and the most toxic PM was from the Sichuan province. To obtain more accurate results and to reduce the false-positive rate, two methods were used to evaluate the speculative results. It was noteworthy that emodin was not the main hepatocyte toxicity constituent of PM. The analysis methods suggested that PM toxicity may be associated with tetrahydroxystilbene-O-(galloyl)-hex and emodin-O-hex-sulfate. The toxicity of these two components requires further study.


Journal of Chromatographic Science | 2015

Simultaneous Determination of Typhaneoside and Isorhamnetin-3-O-Neohesperidoside in Rats After Oral Administration of Pollen Typhae Extract by UPLC–MS/MS

Sali Cao; Boran Ni; Lijun Feng; Xingbin Yin; Haoran Dou; Jing Fu; Longfei Lin; Jian Ni

For the first time, a selective and rapid ultra-performance liquid chromatography method with tandem mass spectrometric (UPLC-MS/MS) detection for simultaneous determination of typhaneoside and isorhamnetin-3-O-neohesperidoside in rat plasma was developed and validated, which was applied to the pharmacokinetic study of Pollen Typhae extract. The separation was carried out on an ACQUITY UPLC(TM) BEH C18 column with gradient elution using mobile phase including acetonitrile and water (containing 0.1% formic acid). The flow rate was 0.4 mL/min. The detection was conducted by means of electrospray ionization mass spectrometry in negative ion mode with multiple reaction monitoring. The assays were linear over the concentration range of 0.5-100 ng/mL, and the lower limit of quantification was 0.5 ng/mL for typhaneoside and isorhamnetin-3-O-neohesperidoside. The method was validated in terms of intra- and interday precision (<9.37%), accuracy (within ±10.91%), linearity, specificity and stability, and has been successfully applied to a pharmacokinetic study of Pollen Typhae extract in rats after oral administration.

Collaboration


Dive into the Xingbin Yin's collaboration.

Top Co-Authors

Avatar

Jian Ni

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Longfei Lin

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Xiaoxv Dong

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Jing Fu

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Changhai Qu

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Chunjing Yang

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Sali Cao

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Wenping Wang

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Hongmei Lin

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Longtai You

Beijing University of Chinese Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge