Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xingchang Zhang is active.

Publication


Featured researches published by Xingchang Zhang.


PLOS ONE | 2014

Responses of Reactive Oxygen Scavenging Enzymes, Proline and Malondialdehyde to Water Deficits among Six Secondary Successional Seral Species in Loess Plateau

Feng Du; Huijun Shi; Xingchang Zhang; Xuexuan Xu

Drought can impact local vegetation dynamics in a long term. In order to predict the possible successional pathway of local community under drought, the responses of some drought resistance indices of six successional seral species in the semi-arid Loss Hilly Region of China were illustrated and compared on three levels of soil water deficits along three growing months (7, 8 and 9). The results showed that: 1) the six species had significant differences in SOD, POD activities and MDA content. The rank correlations between SOD, POD activities and the successional niche positions of the six species were positive, and the correlation between MDA content and the niche positions was negative; 2) activities of SOD, CAT and POD, and content of proline and MDA had significant differences among the three months; 3) there existed significant interactions of SOD, CAT, POD activities and MDA content between months and species. With an exception, no interaction of proline was found. Proline in leaves had a general decline in reproductive month; 4) SOD, CAT, POD activities and proline content had negative correlations with MDA content. Among which, the correlation between SOD activity and MDA content was significant. The results implied that, in arid or semiarid region, the species at later successional stage tend to have strong drought resistance than those at early stage. Anti-drought indices can partially interpret the pathway of community succession in the drought impacted area. SOD activity is more distinct and important on the scope of protecting membrane damage through the scavenging of ROS on exposure to drought.


Chemosphere | 2016

Effects of Pisha sandstone content on solute transport in a sandy soil.

Qing Zhen; Jiyong Zheng; Honghua He; Fengpeng Han; Xingchang Zhang

In sandy soil, water, nutrients and even pollutants are easily leaching to deeper layers. The objective of this study was to assess the effects of Pisha sandstone on soil solute transport in a sandy soil. The miscible displacement technique was used to obtain breakthrough curves (BTCs) of Br(-) as an inert non-adsorbed tracer and Na(+) as an adsorbed tracer. The incorporation of Pisha sandstone into sandy soil was able to prevent the early breakthrough of both tracers by decreasing the saturated hydraulic conductivity compared to the controlled sandy soil column, and the impeding effects increased with Pisha sandstone content. The BTCs of Br(-) were accurately described by both the convection-dispersion equation (CDE) and the two-region model (T-R), and the T-R model fitted the experimental data slightly better than the CDE. The two-site nonequilibrium model (T-S) accurately fit the Na(+) transport data. Pisha sandstone impeded the breakthrough of Na(+) not only by decreasing the saturated hydraulic conductivity but also by increasing the adsorption capacity of the soil. The measured CEC values of Pisha sandstone were up to 11 times larger than those of the sandy soil. The retardation factors (R) determined by the T-S model increased with increasing Pisha sandstone content, and the partition coefficient (K(d)) showed a similar trend to R. According to the results of this study, Pisha sandstone can successfully impede solute transport in a sandy soil column.


Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2010

Spatial variability of soil organic carbon in a catchment of the Loess Plateau

Fengpeng Han; Wei Hu; Jiyong Zheng; Feng Du; Xingchang Zhang

Abstract The issue of soil organic carbon (SOC) is of increasing concern. Because SOC, as an important soil component in farming systems, is essential for improving soil quality, sustaining food production and quality, and maintaining water quality and as a major part of the terrestrial carbon reservoir, it plays an important role in the global carbon cycle. In this paper, a total of 665 soil samples from different depths were collected randomly in the autumn of 2007, and the spatial variability of SOC content at a small catchment of the Loess Plateau was analysed using classical statistics and geo-statistical analysis. In nonsampled areas classical kriging was utilized for interpolation of SOC estimation. The classic statistical analysis revealed moderate spatial variability with all five layers of SOC-content. In addition, the average SOC content decreased with soil depth and the relationship can be modelled by an exponential equation (y=3.1795x −1.2015, R 2=0.9866) and all of the SOC-content data in the different depth were normally distributed. The geo-statistical analysis indicated a moderate spatial dependence in 0–60 cm, while in the 60–80 cm depth spatial dependence was strong. The semi-variogram could be fitted by an exponential model for 0–10 cm depth; by a spherical model for 10–20 cm depth and 60–80 cm depth; and by a Gaussian model for 20–60 cm depth. The range increases with increasing depth. In addition, classical kriging could successfully interpolate SOC content in the catchment. In general, the geo-statistics method on a watershed scale could be accurately used to evaluate spatial variability of the SOC content in the Loess Plateau, China.


Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2010

Spatial variability and distribution of soil nutrients in a catchment of the Loess Plateau in China

Fengpeng Han; Jiyong Zheng; Wei Hu; Feng Du; Xingchang Zhang

Abstract Inappropriate land use is one of the main reasons for soil erosion and nutrient loss in the hilly loess area of the Liudaogou catchment of the Loess Plateau, a typical topography area of hills and gullies. Good management practices, such as the nutrient variability for the different land uses (woodland, grassland, shrub land, farmland, and gully), would help the farmers. One study of the use of Geographic Information System (GIS) spatial analysis and geostatistic analysis was carried out in the catchment. The results showed that the trend of the content of clay and silt in the different soil ranks was: farmland < grassland < shrub land < gully soil. The sandy soil contained fewer nutrients than did the other soils. The farmland contains fewer total phosphorus (TP) and . The spatial dependence of the total nitrogen (TN) and the organic matter (OM) in the sandy soil is strong, but is only moderate in the other types of land use except for OM in farmland. The spatial dependence of TP in the different types of land use patterns is strong too, except in woodland, and the dependence of TP is moderate in grassland. The spatial dependence of and is not strong, especially in woodland, shrub land, and farmland. The dependence of is weak in grassland, gully, and farmland. In the catchment scale, the degree of spatial dependence (GD) is moderate for soil nutrients especially for TN and , but the different nutrients were modelled in different stationary models. The spatial variability of OM, TP, and was modelled by a Gaussian model, and the spatial variability of TN and was modelled by an exponential equation. The nutrients’ distribution in the catchment has been mapped by GIS. From the results, it was seen that annual grass played an important role in the conservation and improvement of soil quality in the Loess Plateau. In addition, the farmland should be given more fertilizer.


Journal of Environmental Management | 2017

Impacts of coal fly ash on plant growth and accumulation of essential nutrients and trace elements by alfalfa (Medicago sativa) grown in a loessial soil

Honghua He; Zhigang Dong; Qi Peng; Xia Wang; Chenbin Fan; Xingchang Zhang

Coal fly ash (CFA) is a problematic solid waste all over the world. One distinct beneficial reuse of CFA is its utilization in land application as a soil amendment. A pot experiment was carried out to assess the feasibility of using CFA to improve plant growth and increase the supply of plant-essential elements and selenium (Se) of a loessial soil for agricultural purpose. Plants of alfalfa (Medicago sativa) were grown in a loessial soil amended with different rates (5%, 10%, 20% and 40%) of CFA for two years and subjected to four successive cuttings. Dry mass of shoots and roots, concentrations of plant-essential elements and Se in plants were measured. Shoot dry mass and root dry mass were always significantly increased by 5%, 10% and 20% CFA treatments, and by 40% CFA treatment in all harvests except the first one. The CFA had a higher supply of exchangeable phosphorus (P), magnesium (Mg), copper (Cu), zinc (Zn), molybdenum (Mo), and Se than the loessial soil. Shoot P, calcium (Ca), Mg, Mo, boron (B), and Se concentrations were generally markedly increased, but shoot potassium (K), Cu, and Zn concentrations were generally reduced. The CFA can be a promising source of some essential elements and Se for plants grown in the loessial soil, and an application rate of not higher than 5% should be safe for agricultural purpose without causing plant toxicity symptoms in the studied loessial soil and similar soils. Field trials will be carried out to confirm the results of the pot experiment.


PLOS ONE | 2013

Spatial analysis of soil organic carbon in Zhifanggou catchment of the Loess Plateau.

Mingming Li; Xingchang Zhang; Qing Zhen; Fengpeng Han

Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of 1282 soil samples were collected from 215 plots over 8.27 km2. A combination of conventional analytical methods and geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC content in the 1282 samples from the study field was 3.08 g·kg−1. The SOC content of each layer decreased with increasing soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial dependence was observed in the 0–10 and 10–20 cm layers, which resulted from stochastic and structural factors. The spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.


PLOS ONE | 2016

The WEPP Model Application in a Small Watershed in the Loess Plateau

Fengpeng Han; Lulu Ren; Xingchang Zhang; Zhanbin Li

In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau.


Science of The Total Environment | 2018

Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone

Yongxing Cui; Linchuan Fang; Xiaobin Guo; Xia Wang; Yunqiang Wang; Pengfei Li; Yanjiang Zhang; Xingchang Zhang

Soil microorganisms are crucial to indicate ecosystem functions of terrestrial ecosystems. However, the responses of microbial communities to soil nutrient limitation in desert-grassland are still poorly understood. Hence, we investigated soil microbial community structures and metabolic characteristics in a desert-grassland ecological transition zone from the northern Loess Plateau, China, and explored the association of microbial communities with nutrient limitation via high-throughput sequencing. Threshold elemental ratios (TER) indicated that the microbial communities were strongly limited by nitrogen (N) under A. ordosica and P. tabuliformis communities. The phosphorus (P) limitation of microbial communities was observed in the aeolian sandy soil. The results imply that soil microbial communities had strong nutrient competition for N and P with aboveground vegetation in arid and oligotrophic ecosystems. The LEfSe and linear regression analysis revealed that the microbial taxa of Micrococcales, Micrococcaceae and Herpotrichiellaceae were significantly correlated with microbial N limitation. The Thermoleophilia taxa were significantly correlated with microbial P limitation. These biomarkers related to microbial nutrient limitation could be considered as the key microbial taxa to shape microbial communities and functions. Furthermore, N form had different effects on microbial communities, which NH4+-N strongly affected bacterial communities, whereas NO3--N had a significant influence on fungal communities. The different responses indicate that soil microorganisms had corresponding nutrient preferences for bacterial and fungal communities, which might alleviate the nutrient limitations and environmental stress. This study provided important insights on microbial community structures linking to community functions and on the mechanisms governing microbial N and P limitation in arid land ecosystems.


Science of The Total Environment | 2018

Phytoextraction of rhenium by lucerne (Medicago sativa) and erect milkvetch (Astragalus adsurgens) from alkaline soils amended with coal fly ash

Honghua He; Zhigang Dong; Jiayin Pang; Gao Lin Wu; Jiyong Zheng; Xingchang Zhang

Coal fly ash (CFA) is an industrial waste generated in huge amounts worldwide, and the management of CFA has become an environmental concern. Recovery of valuable metals from CFA is one of the beneficial reuse options of CFA. Rhenium (Re) is one of the rarest metals in the Earths crust and one of the most expensive metals of strategic significance in the world market. A CFA at the Jungar Thermal Power Plant, Inner Mongolia, China, contains more Re than two alkaline soils in the surrounding region. Pot experiments were undertaken to grow lucerne (Medicago sativa) and erect milkvetch (Astragalus adsurgens) in a loessial soil and an aeolian sandy soil amended with different rates (5%, 10%, 20%, and 40%) of CFA. The results show that plant growth was considerably enhanced and Re concentration in plants was significantly increased when CFA was applied to the alkaline soils at rates of ≤20%; while in some cases plant growth was also markedly enhanced by the 40% CFA treatment, which increased plant Re concentration the most of all treatments. Both lucerne and erect milkvetch showed potential for phytoextracting Re from CFA-amended alkaline soils. Using CFA for soil amendment not only offers a potential solution for the waste disposal problem of CFA, but the phytoextraction of Re by both lucerne and erect milkvetch may also bring an economic profit in the future.


Geoderma | 2009

Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China

Yunqiang Wang; Xingchang Zhang; Chuanqin Huang

Collaboration


Dive into the Xingchang Zhang's collaboration.

Top Co-Authors

Avatar

Fengpeng Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiyong Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Feng Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingming Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Zhen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuexuan Xu

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Lun Shan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ming-An Shao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge