Xingchun Gao
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xingchun Gao.
Cancer Research | 2013
Yanyang Tu; Xingchun Gao; Gang Li; Hualin Fu; Daxiang Cui; Hui Liu; Weilin Jin; Yongsheng Zhang
Malignant gliomas are the most common central nervous system tumors and the molecular mechanism driving their development and recurrence is still largely unknown, limiting the treatment of this disease. Here, we show that restoring the expression of miR-218, a microRNA commonly downregulated in glioma, dramatically reduces the migration, invasion, and proliferation of glioma cells. Quantitative reverse transcription PCR and Western blotting analysis revealed that expression of the stem cell-promoting oncogene Bmi1 was decreased after overexpression of miR-218 in glioma cells. Mechanistic investigations defined Bmi1 as a functional downstream target of miR-218 through which miR-218 ablated cell migration and proliferation. We documented that miR-218 also blocked the self-renewal of glioma stem-like cells, consistent with the suggested role of Bmi1 in stem cell growth. Finally, we showed that miR-218 regulated a broad range of genes involved in glioma cell development, including Wnt pathways that suppress glioma cell stem-like qualities. Taken together, our findings reveal miR-218 as a tumor suppressor that prevents migration, invasion, proliferation, and stem-like qualities in glioma cells.
Cancer Letters | 2014
Xingchun Gao; Weilin Jin
Glioblastoma multiforme (GBM) is by far the most common and most aggressive malignant primary tumor in humans and has poor outcomes despite many advances in treatment using combinations of surgery, radiotherapy and chemotherapy. Recent studies demonstrate that GBM contains a subpopulation of cancer cells with stem cell characteristics, including self-renewal and multipotentiality, and that these cancer stem cells contribute to disease progression. MicroRNAs (miRNAs) are small non-coding regulatory RNA molecules that regulate a variety of cellular processes, including stem cell maintenance. An accumulating body of evidence shows that miR-218 may act as a tumor suppressor by inhibiting glioblastoma invasion, migration, proliferation and stemness through its different targets, indicating the great potential and relevance of miR-218 as a novel class of therapeutic target in glioblastoma.
Tumor Biology | 2014
Xingchun Gao; Yajing Mi; Yue Ma; Weilin Jin
Glioblastoma multiforme (GBM; WHO grade IV) is one of the most common primary tumors of the central nervous system. This disease remains one of the incurable human malignancies because the molecular mechanism driving the GBM development and recurrence is still largely unknown. Here, we show that knockdown of lymphocyte enhancer factor-1 (LEF1), a major transcription factor of Wnt pathway, inhibits U251 cell migration, invasion, and proliferation. Furthermore, downregulation of LEF1 expression inhibits the self-renewal capacity of U251 GBM stem-like cells and decreases the expression level of the GBM stem-like cell (GSC) markers such as CD133 and nestin. Our findings reveal that LEF1 maintains the GBM cell proliferation, migration, and GBM stem-like cell self-renewal. Taken together, these results suggest that LEF1 may be a novel therapeutic target for GBM suppression.
Molecular Medicine Reports | 2014
Na Guo; Aili Yan; Xingchun Gao; Yanke Chen; Xinying He; Zhifang Hu; Man Mi; Xu Tang; Xingchun Gou
Rapamycin is clinically used as an immunosuppressant. Increasing evidence suggests that rapamycin has an important inhibitory role in the development and progression of different types of cancer and that it is a promising candidate for cancer chemotherapy. Berberine is an isoquinoline alkaloid isolated from medicinal plant species, which has been used in traditional Chinese medicine with no significant side effects. Recent research has demonstrated that berberine has anticancer activity against various types of cancer, mediated through the suppression of mammalian target of rapamycin (mTOR). The present study aimed to investigate the in vitro synergistic anticancer effect of combined treatment of rapamycin at various concentrations (0, 10, 50, 100 and 200 nM) and berberine (62.5 µM) in SMMC7721 and HepG2 hepatocellular carcinoma (HCC) cell lines, and the potential underlying molecular mechanism. The combined use of rapamycin and berberine was found to have a synergistic cytotoxic effect, with berberine observed to maintain the cyotoxic effect of rapamycin on HCC cells at a lower rapamycin concentration. Moreover, the cells treated with the combination of the two agents exhibited significantly decreased protein levels of phosphorylated (p)‑p70S6 kinase 1 (Thr389), the downstream effector of mTOR, compared with the cells treated with rapamycin or berberine alone. Furthermore, overexpression of cluster of differentiation (CD) 147, a transmembrance glycoprotein associated with the anticancer effects of berberine, was found to upregulate p‑mTOR expression and inhibit cell death in SMMC7721 cells co‑treated with rapamycin and berberine. In conclusion, the findings of the present study suggest that the combined use of rapamycin and berberine may improve HCC therapy through synergistically inhibiting the mTOR signaling pathway, which is at least in part, mediated through CD147.
Molecules | 2012
Yongsheng Zhang; Yanyang Tu; Xingchun Gao; Jun Yuan; Gang Li; Liang Wang; Jianping Deng; Qi Wang; Ru-Meng Ma
Celastrol, a quinone methide triterpene isolated from Tripterygium wilfordii Hook F., has various biochemical and pharmacological activities, and is now being developed as a promising anti-tumor agent. Inhibitory activity of compounds towards UDP-glucuronosyltransferase (UGT) is an important cause of clinical drug-drug interactions and herb-drug interactions. The aim of the present study is to investigate the inhibition of celastrol towards two important UDP-glucuronosyltransferase (UGT) isoforms UGT1A6 and UGT2B7. Recombinant UGT isoforms and non-specific substrate 4-methylumbelliferone (4-MU) were used. The results showed that celastrol strongly inhibited the UGT1A6 and 2B7-mediated 4-MU glucuronidation reaction, with 0.9 ± 0.1% and 1.8 ± 0.2% residual 4-MU glucuronidation activity at 100 μM of celastrol, respectively. Furthermore, inhibition kinetic study (Dixon plot and Lineweaver-Burk plot) demonstrated that celastrol noncompetitively inhibited the UGT1A1-mediated 4-MU glucuronidation, and competitively inhibited UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameters (Ki) were calculated to be 0.49 μM and 0.045 μM for UGT1A6 and UGT2B7, respectively. At the therapeutic concentration of celastrol for anti-tumor utilization, the possibility of celastrol-drug interaction and celastrol-containing herbs-drug interaction were strongly indicated. However, given the complicated nature of herbs, these results should be viewed with more caution.
Frontiers in Immunology | 2017
Xingchun Gao; Yajing Mi; Na Guo; Hao Xu; Lixian Xu; Xingchun Gou; Weilin Jin
Cytokine-induced killer (CIK) cells are a heterogeneous population of effector CD3+CD56+ natural killer T cells, which can be easily expanded in vitro from peripheral blood mononuclear cells. CIK cells work as pharmacological tools for cancer immunotherapy as they exhibit MHC-unrestricted, safe, and effective antitumor activity. Much effort has been made to improve CIK cells cytotoxicity and treatments of CIK cells combined with other antitumor therapies are applied. This review summarizes some strategies, including the combination of CIK with additional cytokines, dendritic cells, check point inhibitors, antibodies, chemotherapeutic agents, nanomedicines, and engineering CIK cells with a chimeric antigen receptor. Furthermore, we briefly sum up the clinical trials on CIK cells and compare the effect of clinical CIK therapy with other immunotherapies. Finally, further research is needed to clarify the pharmacological mechanism of CIK and provide evidence to formulate uniform culturing criteria for CIK expansion.
International Journal of Molecular Sciences | 2015
Yajing Mi; Xingchun Gao; Jinxiang Dai; Yue Ma; Lixian Xu; Weilin Jin
DNA dioxygenases Ten-Eleven Translocation (TET) proteins can catalyze the conversion of 5-methylcytosine (5mC) of DNA to 5-hydroxymethylcytosine (5hmC), and thereby alter the epigenetic state of DNA. The TET family includes TET1, TET2 and TET3 members in mammals. Recently, accumulative research uncovered that TET1–3 occur abundantly in the central nervous system (CNS), and their biological functions have just begun to be investigated. In the present study, we demonstrated that mRNA and protein of TET2 were highly expressed in the cerebral cortex and hippocampus along the whole brain-development process. Further studies showed that TET2 was expressed in various types of cells, especially in most neurons. Subcellular distribution pattern implicated that TET2 is localized in both nucleus and cytoplasm of neurons. Down-regulation of TET2 in cultured cortical neurons with RNA interference implied that TET2 was required for cell survival. In all, our results indicate that neuronal TET2 is positively involved in the regulation of cell survival.
Asia-pacific Journal of Clinical Oncology | 2015
Xingchun Gao; Yajing Mi; Aili Yan; Baoyong Sha; Na Guo; Zhifang Hu; Ni Zhang; Fengliang Jiang; Xingchun Gou
The association between the rs498872 single nucleotide polymorphism (SNP) and glioma risk has been studied, but these studies have yielded conflicting results. In order to explore this association, we performed a meta‐analysis. A comprehensive literature search was performed using PubMed and EMBASE database, with the last search up to August 23, 2013. Six articles including 10 case‐control studies in English with 18 002 controls and 8434 cases were eligible for the meta‐analysis. Subgroup analyses were conducted by source of controls and ethnicity. The combined results showed that rs498872 polymorphism was significantly associated with glioma risks (TT vs CC: OR = 1.337, 95% CI = 1.222–1.462; TC vs CC: OR = 1.173, 95% CI = 1.081–1.272; dominant model: OR = 1.199, 95% CI = 1.101–1.306; recessive model: OR = 1.237, 95% CI = 1.135–1.347; additive model: OR = 1.156, 95% CI = 1.085–1.232). Moreover, there was increased cancer risk in all genetic models after stratification of the SNP data by the source of controls and ethnicity, and no evidence of publication bias was produced. Our meta‐analysis suggested that rs498872 polymorphism was associated with increased risk of glioma. However, additional studies exploring the combined effects of rs498872 polymorphisms in Asian population should be investigated.
Apoptosis | 2016
Xingchun Gou; Xu Tang; Derek Kai Kong; Xinying He; Xingchun Gao; Na Guo; Zhifang Hu; Zhaohua Zhao; Yanke Chen
Transarterial chemoembolization (TACE) is the standard of care for treatment of intermediate hepatocellular carcinoma (HCC), however, key molecules involved in HCC cell survival and tumor metastasis post-TACE remain unclear. CD147 is a member of the immunoglobulin superfamily that is overexpressed on the surface of HCC cells and is associated with malignant potential and poor prognosis in HCC patients. In this study, using an Earle’s Balanced Salt Solution medium culture model that mimics nutrient deprivation induced by TACE, we investigated the regulation of CD147 expression on HCC cells under starvation conditions and its functional effects on HCC cell death. During early stages of starvation, the expression of CD147 was considerably upregulated in SMMC7721, HepG2 and HCC9204 hepatoma cell lines at the protein levels. Downregulation of CD147 by specific small interfering RNA (siRNA) significantly promoted starvation-induced cell death. In addition, CD147 siRNA-transfected SMMC7721 cells demonstrated significantly increased levels of both apoptosis and autophagy as compared to cells transfected with control siRNA under starvation conditions, whereas no difference was observed between the two treatment groups under normal culture conditions. Furthermore, silencing of CD147 resulted in a remarkable downregulation of phosphorylated mammalian target of rapamycin (p-mTOR) in starved SMMC7721 cells. Finally, the combined treatment of starvation and anti-CD147 monoclonal antibody exhibited a synergistic HCC cell killing effect. Our study suggests that upregulation of CD147 under starvation may reduce hepatoma cell death by modulating both apoptosis and autophagy through mTOR signaling, and that CD147 may be a novel potential molecular target to improve the efficacy of TACE.
Oncotarget | 2016
Xingchun Gao; Yajing Mi; Na Guo; Zhifang Hu; Fengrui Hu; Dou liu; Lei Gao; Xingchun Gou; Weilin Jin
Glioblastoma(GBM) is one of the most common and aggressive malignant primary tumors of the central nervous system and mitochondria have been proposed to participate in GBM tumorigenesis. Previous studies have identified a potential role of Disrupted in Schizophrenia 1 (DISC1), a multi-compartmentalized protein, in mitochondria. But whether DISC1 could regulate GBM tumorigenesis via mitochondria is still unknown. We determined the expression level of DISC1 by both bioinformatics analysis and tissue analysis, and found that DISC1 was highly expressed in GBM. Knocking down of DISC1 by shRNA in GBM cells significantly inhibited cell proliferation both in vitro and in vivo. In addition, down-regulation of DISC1 decreased cell migration and invasion of GBM and self renewal capacity of glioblastoma stem-like cells. Furthermore, multiple independent rings or spheres could be observed in mitochondria in GBM depleted of DISC1, while normal filamentous morphology was observed in control cells, demonstrating that DISC1 affected the mitochondrial dynamic. Dynamin-related protein 1 (Drp1) was reported to contribute to mitochondrial dynamic regulation and influence glioma cells proliferation and invasion by RHOA/ ROCK1 pathway. Our data showed a significant decrease of Drp1 both in mRNA and protein level in GBM lack of DISC1, indicating that DISC1 maybe affect the mitochondrial dynamic by regulating Drp1. Taken together, our findings reveal that DISC1 affects glioblastoma cell development via mitochondria dynamics partly by down regulation of Drp1.