Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinghua Gao is active.

Publication


Featured researches published by Xinghua Gao.


Fundamental & Clinical Pharmacology | 2009

Anti-arthritic effect of scopoletin, a coumarin compound occurring in Erycibe obtusifolia Benth stems, is associated with decreased angiogenesis in synovium.

Rong Pan; Xinghua Gao; Ying Li; Yufeng Xia

Scopoletin is the main constituent of coumarin found in the stems of Erycibe obtusifolia Benth, a traditional Chinese medicine used in the treatment of rheumatoid arthritis. We have previously demonstrated that scopoletin is able to decrease the serum level of uric acid in hyperuricemic mice induced by potassium oxonate, and attenuate croton oil‐induced inflammation. In the present study, we evaluated the anti‐arthritic effects of scopoletin in rat adjuvant‐induced arthritis by assessing paw swelling, pathology, and synovial angiogenesis. It was found that scopoletin, injected intraperitoneally at doses of 50, 100u2003mg/kg, reduced both inoculated and non‐inoculated paw swelling as well as articular index scores, and elevated the mean body weight of adjuvant‐induced arthritic rats. Rats treated with higher dose of scopoletin showed a near‐normal histological architecture of the joints and a reduced new blood vessel formation in the synovial tissues. Furthermore, scopoletin downregulated the overexpression of vascular endothelial growth factor, basic fibroblast growth factor and interleukin 6 in the synovial tissues of adjuvant‐induced arthritic rats. In conclusion, scopoletin is capable of ameliorating clinical symptoms of rat adjuvant‐induced arthritis, by reducing numbers of new blood vessels in the synovium and the production of important endogenous angiogenic inducers. Therefore, this compound may be a potential agent for angiogenesis‐related diseases and could serve as a structural base for screening more potent synthetic analogs.


International Immunopharmacology | 2009

Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis

Rong Pan; Xinghua Gao; Yufeng Xia

Despite scopolin is a main coumarin constituent in the stems of Erycibe obtusifolia Benth, a herb drug that has long been utilized in traditional Chinese medicine for the treatment of rheumatoid arthritis, little information is available about the pharmacological activities of this compound. The present study was performed to investigate the anti-rheumatic effects of scopolin in adjuvant-induced arthritis (AIA) in rats, and explore the underlying mechanisms of action in views of anti-inflammatory and anti-angiogenic properties in the synovial tissues. Scopolin (50, 100 mg/kg), injected intraperitoneally for 10 days from the onset of secondary response, significantly inhibited both inoculated and non-inoculated paw swelling as well as articular index scores in AIA. Meanwhile, the mean body weight of rats treated with scopolin was higher than that of model group. Rats treated with high dose of scopolin (100 mg/kg) preserved a nearly normal histological architecture of the joints and showed a significant reduction of the new blood vessels in the synovial tissues. Additionally, scopolin could reduce IL-6, VEGF and FGF-2 expressions in rat synovial tissues. In conclusion, scopolin can reduce the clinical symptoms of rat AIA by inhibiting inflammation and angiogenesis, and this compound may be a potent agent for angiogenesis related diseases and can serve as a structural base for screening more potent synthetic analogs.


Vascular Pharmacology | 2011

Inhibition of vascular endothelial growth factor-induced angiogenesis by scopoletin through interrupting the autophosphorylation of VEGF receptor 2 and its downstream signaling pathways.

Rong Pan; Xinghua Gao; Dan Lu; Yufeng Xia

Our previous studies revealed that scopoletin, the main bioactive constituent of Erycibe obtusifolia Benth stems, exerted anti-arthritic activity in vivo partly by preventing synovial angiogenesis. Herein we further investigated the anti-angiogenic potential and related mechanisms of this coumarin compound in vivo and in vitro. On chick chorioallantoic membrane (CAM) model, scopoletin (10, 30, 100 nmol/egg) dose-dependently reduced the blood vessels that were quantified by counting the number of blood vessel branch points. In vitro, scopoletin at concentrations above 30 microM obviously inhibited the VEGF-induced tube formation, proliferation and migration of human umbilical vein endothelial cells (HUVECs). Furthermore, scopoletin was shown to block VEGF-induced autophosphorylation of VEGFR2 but not VEGFR1, and down-regulate the following activation of ERK1/2, p38 MAPK and endothelial nitric oxide synthase (eNOS) as well as the production of nitric oxide (NO) in HUVECs. In sum, our findings further support that scopoletin is a candidate of angiogenesis inhibitors, and it functions by interrupting the autophosphorylation of VEGF receptor 2 (VEGFR2) and the downstream signaling pathways.


Evidence-based Complementary and Alternative Medicine | 2011

Polysaccharide of Radix Pseudostellariae Improves Chronic Fatigue Syndrome Induced by Poly I:C in Mice

Rong Sheng; Xianxiang Xu; Qin Tang; Difei Bian; Ying Li; Cheng Qian; Xin He; Xinghua Gao; Rong Pan; Chong Wang; Yubin Luo; Yufeng Xia

Radix Pseudostellariae is used as a tonic drug in traditional Chinese medicine with immunomodulating and anti-fatigue activities, and the polysaccharide is considered as the main active component. The purpose of this study is to examine the effect of the polysaccharide isolated from Radix Pseudostellariae (PRP) on mouse chronic fatigue syndrome (CFS) induced by intraperitoneal injection of polyriboinosinic:polyribocytidylic acid (poly I:C), a double-stranded synthetic RNA. It has shown that the fatigue symptom of mice lasted at least 1 week as evaluated by forced swimming time. PRP (100, 200, 400u2009mgu2009kg−1), orally administered 3 days before poly I:C injection, showed dose-dependent anti-fatigue effects. In addition, poly I:C led to evident alternations in neuroendocrine and immune systems of mice, such as reduced spontaneous activity and learning ability, declined serum level of corticosterone, increased weight indexes and T lymphocyte numbers in thymuses and spleens, and increased CD4+/CD8+ ratio but decreased proliferation ability of T lymphocytes in spleens. PRP alleviated the abnormalities caused by poly I:C, and restored the function of hosts to normal conditions. The findings suggest that PRP is beneficial to CFS, and the underlying mechanisms of action involve neuroendocrine and immune systems.


International Immunopharmacology | 2011

Prevention of FGF-2-induced angiogenesis by scopoletin, a coumarin compound isolated from Erycibe obtusifolia Benth, and its mechanism of action.

Rong Pan; Xinghua Gao; Dan Lu; Xianxiang Xu; Yufeng Xia

Previous work in our laboratory has shown that scopoletin, one of the main bioactive constituents of Erycibe obtusifolia Benth stems, exerts anti-arthritic activity in vivo partly by preventing synovial angiogenesis. The present study was performed to further investigate the anti-angiogenic potential of scopoletin, focusing on the mechanisms of action in vitro. In the aortic ring sprouting assay, scopoletin (10, 30 and 100 μM) significantly inhibited the growth of endothelial sprouts in a concentration-dependent manner. As to human umbilical vein endothelial cells (HUVECs), scopoletin could inhibit their proliferation, migration and tubule formation induced by FGF-2, especially the proliferation. It also remarkably decreased the expression of VEGF at mRNA and protein levels, and the phosphorylations of IKKα and IκB but not Akt, as well as the degradation of IκB caused by FGF-2 in HUVECs. These findings suggest that scopoletin is substantially able to attenuate FGF-2-induced angiogenesis, and it might act by directly preventing the stimulation action of FGF-2 and by indirectly decreasing the production of VEGF. Scopoletin down-regulated the VEGF expression through NF-κB rather than PI-3K/Akt signaling pathway.


Inflammation | 2013

Paeoniflorin Attenuates Lipopolysaccharide-Induced Permeability of Endothelial Cells: Involvements of F-Actin Expression and Phosphorylations of PI3K/Akt and PKC

Huan Xu; Jie Song; Xinghua Gao; Zhao Xu; Xianxiang Xu; Yufeng Xia

This study aimed to investigate the effects of paeoniflorin, the main active ingredient of the medicinal plant Paeonia lactiflora Pall., on the permeability of endothelial cells induced by lipopolysaccharide (LPS) and the underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were stimulated by LPS. Extravasated FITC-dextran reflecting permeability was assessed by multimode microplate reader, and the migration of bis-carboxyethyl-carboxyfluorescein acetoxy-methyl-labeled human acute monocytic leukemia cell line and leukemia cell line cells through HUVECs were analyzed by fluorescence microscopy. The phosphorylations of phosphatidylinositol 3-kinase (PI3K)/Akt, protein kinase C (PKC), and cofilin in HUVECs were assessed by western blotting, and the F-actin level was detected by laser scanning confocal microscopy. After LPS stimulation, inflammatory endothelial cells exhibited significantly increased permeability. Paeoniflorin (10, 30, and 100xa0μM) inhibited dextran extravasation and leukocyte migration through HUVECs induced by LPS in a concentration-dependent manner. Moreover, paeoniflorin was able to suppress the phosphorylations of PI3K/Akt, PKC, and cofilin, as well as F-actin reorganization in HUVECs induced by LPS. These findings revealed that paeoniflorin partly blocked LPS-induced endothelium permeability, supporting a new explanation for its anti-inflammatory effects.


Experimental Biology and Medicine | 2012

Norisoboldine, an alkaloid compound isolated from Radix Linderae, inhibits synovial angiogenesis in adjuvant-induced arthritis rats by moderating Notch1 pathway-related endothelial tip cell phenotype.

Qian Lu; Shuai Lu; Xinghua Gao; Yubin Luo; Bei Tong; Zhifeng Wei; Tao Lu; Yufeng Xia; Gui-Xin Chou; Zhengtao Wang

Synovial angiogenesis is well recognized as participating in the pathogenesis of rheumatoid arthritis (RA) and has been regarded as a potential target for RA therapy. Previously, we have shown that norisoboldine (NOR) can protect joints from destruction in mice with collagen II-induced arthritis (CIA). Here, we investigate the effect of NOR on synovial angiogenesis in adjuvant-induced arthritis (AA) rats, and clarify the mechanisms in vitro. NOR, administered orally, significantly reduced the number of blood vessels and expression of growth factors in the synovium of AA rats. In vitro, it markedly prevented the migration and sprouting of endothelial cells. Notably, the endothelial tip cell phenotype, which is essential for the migration of endothelial cells and subsequent angiogenesis, was significantly inhibited by NOR. This inhibitory effect was attenuated by pretreatment with N-{N-[2-(3,5-difluorophenyl) acetyl]-(S)-alanyl}-(S)-phenylglycine tert-butyl ester, a Notch1 inhibitor, suggesting that the action of NOR was related to the Notch1 pathway. A molecular docking study further confirmed that NOR was able to promote Notch1 activation by binding the Notch1 transcription complex. In conclusion, NOR was able to prevent synovial angiogenesis in AA rats, which is a putatively new mechanism responsible for its anti-rheumatoid effect. The anti-angiogenesis action of NOR was likely achieved by moderating the Notch1 pathway-related endothelial tip cell phenotype with a potential action target of the Notch1 transcription complex.


Journal of Natural Medicines | 2009

Saponin fraction from Astragalus membranaceus roots protects mice against polymicrobial sepsis induced by cecal ligation and puncture by inhibiting inflammation and upregulating protein C pathway

Xinghua Gao; Xianxiang Xu; Rong Pan; Ying Li; Yubin Luo; Yufeng Xia; Kazuya Murata; Hideaki Matsuda

Sepsis remains the leading cause of death in intensive care units. Uncontrolled systemic inflammation and an impaired protein C pathway are two important contributors to sepsis pathophysiology. Based on the beneficial effects of the saponin fraction from Astragalus membranaceus roots (SAM) against inflammation, liver dysfunction, and endothelium injury, we investigated the potential protective roles and underlying mechanisms of SAM on polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. SAM, orally administered 1xa0h before and after CLP, significantly elevated the survival rate of mice. At 96xa0h after CLP operation, all mice in the model group died, whereas 33.3% of mice in the SAM (400xa0mg/kg)-treated group survived. SAM attenuated both inflammatory factors and their abilities to induce tissue dysfunction, which was mainly evidenced by decreased infiltration of polymorphonuclear leukocytes, tissue edema, and lung wet-to-dry weight ratio, lowered levels of myeloperoxidase (MPO), nitric oxide (NO), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in serum, as well as downregulated expressions of iNOS and IL-1β mRNA in livers. Furthermore, we addressed the effects of SAM on the protein C (PC) pathway, closely linked with sepsis. In CLP-induced septic mice, SAM elevated the impaired expression of PC mRNA in livers. In vitro, SAM reversed the decreased expressions of thrombomodulin (TM) and endothelial PC receptor (EPCR) mRNA induced by lipopolysaccharide (LPS) in endothelial cells. These findings suggest that SAM is able to restore the impaired protein C pathway. Taken together, the current study demonstrates that SAM has protective effects on polymicrobial sepsis in mice. The mechanisms of action involve anti-inflammation and upregulation of the PC pathway.


Cytotechnology | 2013

Saponin-rich fraction from Clematis chinensis Osbeck roots protects rabbit chondrocytes against nitric oxide-induced apoptosis via preventing mitochondria impairment and caspase-3 activation

Wenjun Wu; Xinghua Gao; Xianxiang Xu; Yubin Luo; Mei Liu; Yufeng Xia

Our previous study reported that the saponin-rich fraction from Clematis chinensis Osbeck roots (SFC) could effectively alleviate experimental osteoarthritis induced by monosodium iodoacetate in rats through protecting articular cartilage and inhibiting local inflammation. The present study was performed to investigate the preventive effects of SFC on articular chondrocyte, and explore the underlying mechanisms. Primary rabbit chondrocytes were cultured and exposed to sodium nitroprusside (SNP), a NO donor. After treatment with different concentrations of SFC (30, 100, 300, 1,000xa0μg/ml) for 24xa0h, nucleic morphology, apoptotic rate, mitochondrial function and caspase-3 activity of chondrocytes were examined. The results showed that SNP induced remarkable apoptosis of rabbit chondrocytes evidenced by Hoechst 33258 staining and flow cytometry analysis, and SFC prevented the apoptosis in a concentration-dependent manner. Further studies indicated that SFC could prevent the depolarization of mitochondrial membrane potential (∆ψm) in SNP-treated chondrocytes and suppress the activation of caspase-3. It can be concluded that the protection of SFC on articular chondrocytes is associated with the anti-apoptosis effects via inhibiting the mitochondrion impairment and caspase-3 activation.


Journal of Cellular Biochemistry | 2013

Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor.

Qian Lu; Chong Wang; Rong Pan; Xinghua Gao; Zhifeng Wei; Yufeng Xia

Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10u2009µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration‐dependently enhance bFGF‐induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1‐receptor antagonist), SB203580 (selective p38 mitogen‐activated protein kinase (MAPK) inhibitor) and L‐NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2‐receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF‐incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF‐κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF‐induced angiogenesis, and this action was linked to VEGF production through H1‐receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. J. Cell. Biochem. 114: 1009–1019, 2013.

Collaboration


Dive into the Xinghua Gao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge