Xinghui Shen
Harbin Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xinghui Shen.
EMBO Reports | 2016
Jiaqiang Wang; Xin Li; Leyun Wang; Jingyu Li; Yanhua Zhao; Gerelchimeg Bou; Yu-Fei Li; Guanyi Jiao; Xinghui Shen; Renyue Wei; Shichao Liu; Bingteng Xie; Lei Lei; Wei Li; Qi Zhou; Zhonghua Liu
Endogenous retroviruses (ERVs) are transcriptionally active in cleavage stage embryos, yet their functions are unknown. ERV sequences are present in the majority of long intergenic noncoding RNAs (lincRNAs) in mouse and humans, playing key roles in many cellular processes and diseases. Here, we identify LincGET as a nuclear lincRNA that is GLN‐, MERVL‐, and ERVK‐associated and essential for mouse embryonic development beyond the two‐cell stage. LincGET is expressed in late two‐ to four‐cell mouse embryos. Its depletion leads to developmental arrest at the late G2 phase of the two‐cell stage and to MAPK signaling pathway inhibition. LincGET forms an RNA–protein complex with hnRNP U, FUBP1, and ILF2, promoting the cis‐regulatory activity of long terminal repeats (LTRs) in GLN, MERVL, and ERVK (GLKLTRs), and inhibiting RNA alternative splicing, partially by downregulating hnRNP U, FUBP1, and ILF2 protein levels. Hnrnpu or Ilf2 mRNA injection at the pronuclear stage also decreases the preimplantation developmental rate, and Fubp1 mRNA injection at the pronuclear stage causes a block at the two‐cell stage. Thus, as the first functional ERV‐associated lincRNA, LincGET provides clues for ERV functions in cleavage stage embryonic development.
Journal of Biological Chemistry | 2012
Zhong Zheng; Jia-Lin Jia; Gerelchimeg Bou; Li-Li Hu; Zhendong Wang; Xinghui Shen; Zhiyan Shan; Jingling Shen; Zhonghua Liu; Lei Lei
Background: The nucleolus always shows delayed development and malfunction in somatic cell nuclear transfer (NT) embryos. Results: NT embryos showed low rDNA activity and developmental competence when donor cells with low rDNA activity were used. Conclusion: rDNA reprogramming efficiency in NT embryos was determined by the rDNA activity in donor cells from which they derived. Significance: Developmental potential of NT embryos with rDNA activity in the donor cells was correlated. The well known and most important function of nucleoli is ribosome biogenesis. However, the nucleolus showed delayed development and malfunction in somatic cell nuclear transfer (NT) embryos. Previous studies indicated that nearly half rRNA genes (rDNA) in somatic cells were inactive and not transcribed. We compared the rDNA methylation level, active nucleolar organizer region (NORs) numbers, nucleolar proteins (upstream binding factor (UBF), nucleophosmin (B23)) distribution, and nucleolar-related gene expression in three different donor cells and NT embryos. The results showed embryonic stem cells (ESCs) had the most active NORs and lowest rDNA methylation level (7.66 and 6.76%), whereas mouse embryonic fibroblasts (MEFs) were the opposite (4.70 and 22.57%). After the donor cells were injected into enucleated MII oocytes, cumulus cells and MEFs nuclei lost B23 and UBF signals in 20 min, whereas in ESC-NT embryos, B23 and UBF signals could still be detected at 60 min post-NT. The embryos derived from ESCs, cumulus cells, and MEFs showed the same trend in active NORs numbers (7.19 versus 6.68 versus 5.77, p < 0.05) and rDNA methylation levels (6.36 versus 9.67% versus 15.52%) at the 4-cell stage as that in donor cells. However, the MEF-NT embryos displayed low rRNA synthesis/processing potential at morula stage and had an obvious decrease in blastocyst developmental rate. The results presented clear evidences that the rDNA reprogramming efficiency in NT embryos was determined by the rDNA activity in donor cells from which they derived.
Development Growth & Differentiation | 2012
Zhiyan Shan; Yanshuang Wu; Xinghui Shen; Xue Li; Yuan Xue; Zhong Zheng; Zhendong Wang; Chun-Jia Liu; Ruizhen Sun; Zhao-Yuan Li; Jingling Shen; Zhong-Hua Liu; Lei Lei
Parthenogenetic embryonic stem cells (PgES) might advance cell replacement therapies and provide a valuable in vitro model system to study the genomic imprinting. However, the differential potential of PgES cells was limited. It could result from relative low heterology of PgES cells compared with ES cells from fertilization (fES), which produce different expression of most imprinted genes. Here, we described the establishment of PgES cells by aggregating parthenogenetic embryos at the 8‐cell stage (aPgES cells), which may increase heterozygy. We found that derivation of aPgES cells in association with an increased number of inner cell mass cells by aggregating was more efficient than that of PgES cells from a single parthenogenetic blastocyst. The aPgES cells have normal karyotype, stain positive for alkaline phosphatase, express high levels of ES cell markers and can differentiate into teratomas composed of the three germ layers. Moreover, compared with PgES cells, the more highly upregulated paternally expressed imprinted genes were observed in aPgES cells, the same change was not shown in aPg blastocysts. This suggested that the aggregation induced effect could modify the expression of paternally expressed imprinted genes. Our studies showed that aPgES cells, the expression of imprinted genes in which more closely resemble fES cells than PgES cells, would contribute to all organs and avoiding immuno‐rejection, which may provide invaluable material for regeneration medicine.
Reproduction | 2013
Xue Li; Zhiyan Shan; Yanshuang Wu; Xinghui Shen; Chun-Jia Liu; Jingling Shen; Zhonghua Liu; Lei Lei
Pig pluripotent cells may represent an advantageous experimental tool for developing therapeutic application in the human biomedical field. However, it has previously been proven to be difficult to establish from the early embryo and its pluripotency has not been distinctly documented. In recent years, induced pluripotent stem (iPS) cell technology provides a new method of reprogramming somatic cells to pluripotent state. The generation of iPS cells together with or without certain small molecules has become a routine technique. However, the generation of iPS cells from pig embryonic tissues using viral infections together with small molecules has not been reported. Here, we reported the generation of induced pig pluripotent cells (iPPCs) using the iPS technology in combination with valproic acid (VPA). VPA treatment significantly increased the expression of pluripotent genes and played an important role in early reprogramming. We showed that iPPCs resembled pig epiblast cells in their morphology and pluripotent markers, such as OCT4, NANOG, and SSEA1. It had a normal karyotype and could form embryoid bodies, which express three germ layer markers in vitro. In addition, the iPPCs might directly differentiate into neural progenitors after being induced with the retinoic acid and extracellular matrix. Our study established a reasonable method to generate pig pluripotent cells, which might be a new donor cell source for human neural disease therapy.
Zygote | 2012
Li-Li Hu; Xinghui Shen; Zhong Zheng; Zhendong Wang; Zhonghua Liu; Lianhong Jin; Lei Lei
Intracytoplasmic sperm injection (ICSI) is a technique commonly used in clinical and research settings. In mouse oocytes, conventional ICSI has a poor survival rate caused by a high level of lysis. Cytochalasin B (CB) is a toxic microfilament-inhibiting agent that is known to relax the cytoskeleton and enhance the flexibility of oocytes. CB has been used widely in nuclear transfer experiments to improve the success rate of the micromanipulation, however information describing the use of CB in ICSI is limited. Here, we demonstrated that the addition of 5 μg/ml CB to the manipulation medium of ICSI procedure significantly improved the survival rate of the ICSI embryos (80.74% vs. 89.50%, p < 0.05), and that there was no harm for the in vitro or in vivo development. The birth rates and birth weights were not significantly different between the CB-treated and -untreated groups. Interestingly, the microfilaments of the ICSI embryos were almost undetectable immediately after CB treatment; however, they gradually re-appeared and had fully recovered to the normal level 2 h later. Moreover, CB did not disturb spindle rotation, second polar body formation or pronuclei migration, and had no effect on the microtubules. We thus conclude that ICSI manipulation in CB-containing medium results in significantly improved survival rate of mouse ICSI embryos, and that short-term treatment with CB during ICSI manipulation does not have adverse effects on the development of ICSI embryos.
Cellular Reprogramming | 2014
Zhiyan Shan; Yanshuang Wu; Xue Li; Xinghui Shen; Zhendong Wang; Zhong-hua Liu; Jingling Shen; Lei Lei
Induced pluripotent stem cells (iPSCs) are usually generated by reprogramming somatic cells through transduction with a transcription factor cocktail. However, the low efficiency of this procedure has kept iPSCs away from the study of the clinical application of stem cell biology. Our research shows that continuous passage increases the efficiency of reprogramming. Compared with conventional method of establishment of iPSCs, more embryonic stem cell (ESC)-like clones are generated by continuous passage during early reprogramming. These inchoate clones, indistinguishable from genuine ESC clones, are closer to fully reprogrammed cells compared with those derived from classical iPSC induction, which increased the expression of pluripotent gene markers and the levels of demethylation of Oct4 and Nanog. These results suggested that full reprogramming is a gradual process that does not merely end at the point of the activation of endogenous pluripotency-associated genes. Continuous passage could increase the pluripotency of induced cells and accelerate the process of reprogramming by epigenetic modification. In brief, we have provided an advanced strategy to accelerate the reprogramming and generate more nearly fully reprogrammed iPSCs efficiently and rapidly.
Zygote | 2015
Ruizhen Sun; Lei Lei; Shichao Liu; Binghua Xue; Jianyu Wang; Jiaqiang Wang; Jingling Shen; Lian Duan; Xinghui Shen; Yimei Cong; Yanli Gu; Kui Hu; Lianhong Jin; Zhonghua Liu
Morphogenesis and identification of embryonic differentiation in porcine embryos are crucial issues for developmental biology and laboratory animal science. The current paper presents a study on the asynchronous development of hatched porcine embryos from days 7 to 13 post-insemination. Examination of semi-thin sections of the hypoblast showed that it had characteristics similar to those of the mouse anterior visceral endoderm during embryonic disc formation. Also, a cavity appeared in the epiblast, which was similar to a mouse proamniotic cavity. With the gradual disappearance of Raubers layer, the cavity opened and contacted the external environment directly, all of which formed the embryonic disc. To confirm the differentiation characteristics, we performed immunohistochemical analyses and showed that GATA6 was detected clearly in parietal endoderm cells during embryonic disc establishment. OCT4 was expressed in the inner cell mass (ICM) and trophoblast of hatched blastocysts and in the epiblast during formation of the embryonic disc. However, OCT4 showed comparatively decreased expression in the posterior embryonic disc, primitive streak and migrating cells. SOX2 was present in the ICM and epiblast. Therefore, both SOX2 and OCT4 can be used as markers of pluripotent cells in the porcine embryonic disc. At the start of gastrulation, staining revealed VIMENTIN in the posterior of the embryonic disc, primitive streak and in migrating cells that underlay the embryonic disc and was also expressed in epiblast cells located in the anterior primitive streak. Together with serial sections of embryos stained by whole mount immunohistochemistry, the mesoderm differentiation pattern was shown as an ingression movement that took place at the posterior of the embryonic disc and with bilateral migration along the embryonic disc borders.
Scientific Reports | 2016
Xinghui Shen; Na Zhang; Zhendong Wang; Guangyu Bai; Zhong Zheng; Yanli Gu; Yanshuang Wu; Hui Liu; Dongjie Zhou; Lei Lei
Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT.
Zygote | 2015
Jingling Shen; Zhendong Wang; Xinghui Shen; Zhong Zheng; Zhang Qh; Xiuqing Feng; Li-Li Hu; Lei Lei
The efficiency of somatic cell nuclear transfer (SCNT) cloning remains low, thus limiting the applications of this technique. In this study, we used immunochemistry and confocal microscopy to detect the microtubule component, β-tubulin, in SCNT, parthenogenetic (PA), and intracytoplasmic sperm injection (ICSI) embryos before the first mitotic division. β-Tubulin is the component subunit of microtubule, which plays critical roles in regulating localization of cellular organelles, and the growth, maturation and fertilization of oocytes. Our results demonstrated similar changes of spindle patterns in PA and ICSI embryos. The second meiotic division resumed 1 h post-treatment, and the cytoplasmic asters (CAs) disappeared. After about 4-6 h of treatment, pronuclei formed with the midbodies connecting each other. Meanwhile, the CAs reappeared and a microtubule network developed in the cytoplasm. However, SCNT embryos showed abnormal multipolar spindles, and the pseudopronuclei that contained many nucleoli existed after 6 h of SrCl2 activation. Enucleated oocytes alone did not form spindle-like structures when they were artificially activated for 6 h, indicating that somatic cell chromosomes might be necessary for spindle formation in SCNT embryos. These results demonstrated abnormal changes of β-tubulin in mouse SCNT embryos, compared with PA and ICSI embryos.
PLOS ONE | 2014
Yanli Gu; Xinghui Shen; Dongjie Zhou; Zhendong Wang; Na Zhang; Zhiyan Shan; Lianhong Jin; Lei Lei
Real-time reverse transcription quantitative polymerase chain reaction (qPCR) has become the most frequently used system for studies of gene expression. Manystudies have provided reliable evidence that the transcription levels of reference genes are not constant at different developmental stages and in different experimental conditions. However, suitable reference genes which are stably expressed in polyploid preimplantation embryos of different developmental stages have not yet been identified. Therefore, it is critical to verify candidate reference genes to analyze gene expression accurately in both diploid and polyploid embryos. We examined the expression levels of 12 candidate reference genes in preimplantation embryos of four different ploidies at six developmental stages. Stability analysis of the reference genes was performed by four independent software programs, and the stability of three genes was evaluated by comparison with the Oct4 expression level during preimplantation development in diploid embryos. The expression levels of most genes in the polyploid embryos were higher than that in the diploid embryos, but the increasing degree were disproportionate with the ploidies. There were no significant difference in reference gene expressions among embryos of different ploidies when they reached the morula stage, and the expression level remained flat until the blastocyst stage. Ubc, Ppia, and Pgk1 were the three most stable reference genes in diploid and polyploid embryos.