Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xingliang Li is active.

Publication


Featured researches published by Xingliang Li.


Monthly Weather Review | 2013

A Multimoment Constrained Finite-Volume Model for Nonhydrostatic Atmospheric Dynamics

Xingliang Li; Chungang Chen; Xueshun Shen; Feng Xiao

AbstractThe two-dimensional nonhydrostatic compressible dynamical core for the atmosphere has been developed by using a new nodal-type high-order conservative method, the so-called multimoment constrained finite-volume (MCV) method. Different from the conventional finite-volume method, the predicted variables (unknowns) in an MCV scheme are the values at the solution points distributed within each mesh cell. The time evolution equations to update the unknown point values are derived from a set of constraint conditions based on the multimoment concept, where the constraint on the volume-integrated average (VIA) for each mesh cell is cast into a flux form and thus guarantees rigorously the numerical conservation. Two important features make the MCV method particularly attractive as an accurate and practical numerical framework for atmospheric and oceanic modeling. 1) The predicted variables are the nodal values at the solution points that can be flexibly located within a mesh cell (equidistant solution poin...


Monthly Weather Review | 2011

An Adaptive Multimoment Global Model on a Cubed Sphere

Chungang Chen; Feng Xiao; Xingliang Li

An adaptive global shallow-water model is proposed on cubed-sphere grid using the multimoment finite volume scheme and the Berger-Oliger adaptive mesh refinement (AMR) algorithm that was originally designed for a Cartesian grid. On each patch of the cubed-sphere grid, the curvilinear coordinates are constructed in a way that the Berger-Oliger algorithm can be applied directly. Moreover, an algorithm to transfer data across neighboring patches is proposed to establish a practical integrated framework for global AMR computation on the cubed-sphere grid. The multimoment finite volume scheme is adopted as the fluid solver and is essentially beneficial to the implementation of AMR on the cubed-sphere grid. The multimoment interpolation based on both volume-integrated average (VIA) and point value (PV) provides the compact reconstruction that makes the present scheme very attractive not only in dealing with the artificial boundaries between different patches but also in the coarse fine interpolations required in the AMR computations. The single-cell-based reconstruction avoids involving more than two nesting levels during interpolations. The reconstruction profile of constrained interpolation profile-conservative semi-Lagrangian scheme with third-order polynomial function (CIP-CSL3) is adopted where the slope parameter provides a flexible and convenient switching to get the desired numerical properties, such as high-order (fourth order) accuracy, monotonicity, and positive definiteness. Numerical experiments with typical benchmark tests for both advection equation and shallow-water equations are carried out to evaluate the proposed model. The numerical errors and the corresponding CPU times of numerical experiments on uniform and adaptive meshes verify the performance of the proposed model. Compared to the uniformly refined grid, the AMR technique is able to achieve the similar numerical accuracy with less computational cost.


Journal of Computational Physics | 2014

Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids

Chungang Chen; Xingliang Li; Xueshun Shen; Feng Xiao

This is a review article to present several accurate and computationally efficient global models for shallow water equations recently developed under a general numerical framework, the multi-moment constrained finite volume (MCV) method. The multi-moment constrained finite volume method defines the unknowns (prognostic variables) as the point values at the solution points located over each mesh element. The time evolution equations to update these unknowns are derived through the constraint conditions on different moments, e.g. the point value (PV) and the volume-integrated average (VIA). Rigorous numerical conservation is guaranteed by the constraint on the VIA moment through a finite volume formulation of flux form. The resulted numerical schemes are very simple, efficient and easy to implement for both structured and unstructured grids. We have implemented the MCV method to three major spherical grids, Yin-Yang overset grid, cubed-sphere grid and geodesic icosahedral grid, which have overall quasi-uniform grid spacings and are highly popular in the community of global modeling for atmospheric and oceanic dynamics. In this paper, we present the global shallow water models based on these three spherical grids and the third-order MCV scheme. We evaluate and compare the models by widely used benchmark tests, which show the third-order convergence rate for all models, and the numerical results are competitive to other exiting models. Using MCV method as a numerical formulation is well-balanced between solution quality and computational simplicity, the proposed models provide accurate and practical bases for developing dynamic core of general circulation models on different spherical grids.


Advances in Atmospheric Sciences | 2015

An improved dynamic core for a non-hydrostatic model system on the Yin-Yang grid

Xiaohan Li; Xindong Peng; Xingliang Li

A 3D dynamic core of the non-hydrostatic model GRAPES (Global/Regional Assimilation and Prediction System) is developed on the Yin-Yang grid to address the polar problem and to enhance the computational efficiency. Three-dimensional Coriolis forcing is introduced to the new core, and full representation of the Coriolis forcing makes it straightforward to share code between the Yin and Yang subdomains. Similar to that in the original GRAPES model, a semi-implicit semi-Lagrangian scheme is adopted for temporal integration and advection with additional arrangement for cross-boundary transport. Under a non-centered second-order temporal and spatial discretization, the dry nonhydrostatic frame is summarized as the solution of an elliptical problem. The resulting Helmholtz equation is solved with the Generalized Conjugate Residual solver in cooperation with the classic Schwarz method. Even though the coefficients of the equation are quite different from those in the original model, the computational procedure of the new core is just the same. The bi-cubic Lagrangian interpolation serves to provide Dirichlet-type boundary conditions with data transfer between the subdomains. The dry core is evaluated with several benchmark test cases, and all the tests display reasonable numerical stability and computing performance. Persistency of the balanced flow and development of both the mountain-induced Rossby wave and Rossby-Haurwitz wave confirms the appropriate installation of the 3D Coriolis terms in the semi-implicit semi-Lagrangian dynamic core on the Yin-Yang grid.


Advances in Atmospheric Sciences | 2013

An Accurate Multimoment Constrained Finite Volume Transport Model on Yin-Yang Grids

Xingliang Li; Xueshun Shen; Xindong Peng; Feng Xiao; Zhaorong Zhuang; Chungang Chen

A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid. The MCV scheme defines 16 degrees of freedom (DOFs) within each element to build a 2D cubic reconstruction polynomial. The time evolution equations for DOFs are derived from constraint conditions on moments of line-integrated averages (LIA), point values (PV), and values of first-order derivatives (DV). The Yin-Yang grid eliminates polar singularities and results in a quasi-uniform mesh. A limiting projection is designed to remove nonphysical oscillations around discontinuities. Our model was tested against widely used benchmarks; the competitive results reveal that the model is accurate and promising for developing general circulation models.


international conference on conceptual structures | 2012

Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme

Xingliang Li; Xueshun Shen; Xindong Peng; Feng Xiao; Zhaorong Zhuang; Chungang Chen

Abstract A fourth order transport model is proposed for global computation with the application of multi-moment constrained finite volume (MCV) scheme and Yin-Yang overset grid. Using multi-moment concept, local degrees of freedom (DOFs) are point-wisely defined within each mesh element to build a cubic spatial reconstruction. The updating formulations for local DOFs are derived by adopting multi moments as constraint conditions, including volume-integrated average (VIA), point value (PV) and first order derivative value (DV). Using Yin-Yang grid eliminates the polar singularities and results in a quasi-uniform mesh over the whole globe. Each component of Yin-Yang grid is a part of the LAT-LON grid, an orthogonal structured grid, where the MCV formulations designed for Cartesian grid can be applied straightforwardly to develop the high order numerical schemes. Proposed MCV model is checked by widely used benchmark tests. The numerical results show that the present model has fourth order accuracy and is competitive to most existing ones.


Advances in Atmospheric Sciences | 2014

Improvement of the Semi-Lagrangian Advection Scheme in the GRAPES Model: Theoretical Analysis and Idealized Tests

Bo Huang; Dehui Chen; Xingliang Li; Chao Li

The Global/Regional Assimilation and PrEdiction System (GRAPES) is the new-generation numerical weather prediction (NWP) system developed by the China Meteorological Administration. It is a fully compressible non-hydrostatical global/regional unified model that uses a traditional semi-Lagrangian advection scheme with cubic Lagrangian interpolation (referred to as the SL_CL scheme). The SL_CL scheme has been used in many operational NWP models, but there are still some deficiencies, such as the damping effects due to the interpolation and the relatively low accuracy. Based on Reich’s semi-Lagrangian advection scheme (referred to as the R2007 scheme), the Re_R2007 scheme that uses the low- and high-order B-spline function for interpolation at the departure point, is developed in this paper. One- and two-dimensional idealized tests in the rectangular coordinate system with uniform grid cells were conducted to compare the Re_R2007 scheme and the SL_CL scheme. The numerical results showed that: (1) the damping effects were remarkably reduced with the Re_R2007 scheme; and (2) the normalized errors of the Re_R2007 scheme were about 7.5 and 3 times smaller than those of the SL_CL scheme in one- and two-dimensional tests, respectively, indicating the higher accuracy of the Re_R2007 scheme. Furthermore, two solid-body rotation tests were conducted in the latitude-longitude spherical coordinate system with nonuniform grid cells, which also verified the Re_R2007 scheme’s advantages. Finally, in comparison with other global advection schemes, the Re_R2007 scheme was competitive in terms of accuracy and flow independence. An encouraging possibility for the application of the Re_R2007 scheme to the GRAPES model is provided.


Journal of meteorological research | 2015

Effects of terrain-following vertical coordinates on high-resolution NWP simulations

Chao Li; Dehui Chen; Xingliang Li; Jianglin Hu

With increasing resolution in numerical weather prediction (NWP) models, the model topography can be described with finer resolution and includes steeper slopes. Consequently, negative effects of the traditional terrain-following vertical coordinate on high-resolution numerical simulations become more distinct due to larger errors in the pressure gradient force (PGF) calculation and associated distortions of the gravity wave along the coordinate surface. A series of numerical experiments have been conducted in this study, including idealized test cases of gravity wave simulation over a complex mountain, error analysis of the PGF estimation over a real topography, and a suite of real-data test cases. The GRAPES-Meso model is utilized with four different coordinates, i.e., the traditional terrain-following vertical coordinate proposed by Gal-Chen and Somerville (hereinafter referred to as the Gal.C.S coordinate), the one-scale smoothed level (SLEVE1), the two-scale smoothed level (SLEVE2), and the COSINE (COS) coordinates. The results of the gravity wave simulation indicate that the GRAPES-Meso model generally can reproduce the mountain-induced gravity waves, which are consistent with the analytic solution. However, the shapes, vertical structures, and intensities of the waves are better simulated with the SLEVE2 coordinate than with the other three coordinates. The model with the COS coordinate also performs well, except at lower levels where it is not as effective as the SLEVE2 coordinate in suppressing the PGF errors. In contrast, the gravity waves simulated in both the Gal.C.S and SLEVE1 coordinates are relatively distorted. The estimated PGF errors in a rest atmosphere over the real complex topography are much smaller (even disappear at the middle and upper levels) in the GRAPES-Meso model using the SLEVE2 and COS coordinates than those using the Gal.C.S and SLEVE1 coordinates. The results of the real-data test cases conducted over a one-month period suggest that the three modified vertical coordinates (SLEVE1, SLEVE2, and COS coordinates) give better results than the traditional Gal.C.S coordinate in terms of forecasting bias and root mean square error, and forecasting anomaly correlation coefficients. In conclusion, the SLEVE2 coordinate is proved to be the best option for the GRAPES-Meso model.


Advances in Meteorology | 2016

An MCV Nonhydrostatic Atmospheric Model with Height-Based Terrain following Coordinate: Tests of Waves over Steep Mountains

Xingliang Li; Xueshun Shen; Feng Xiao; Chungang Chen

A nonhydrostatic atmospheric model was tested with the mountain waves over various bell-shaped mountains. The model is recently proposed by using the MCV (multimoment constrained finite volume) schemes with the height-based terrain following coordinate representing the topography. As discussed in our previous work, the model has some appealing features for atmospheric modeling and can be expected as a practical framework of the dynamic cores, which well balances the numerical accuracy and algorithmic complexity. The flows over the mountains of various half widths and heights were simulated with the model. The semianalytic solutions to the mountain waves through the linear theory are used to check the performance of the MCV model. It is revealed that the present model can accurately reproduce various mountain waves including those generated by the mountains with very steep inclination and is very promising for numerically simulating atmospheric flows over complex terrains.


Applied Mathematical Modelling | 2013

A note on the general multi-moment constrained flux reconstruction formulation for high order schemes

Feng Xiao; Satoshi; Chungang Chen; Xingliang Li

Collaboration


Dive into the Xingliang Li's collaboration.

Top Co-Authors

Avatar

Chungang Chen

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Feng Xiao

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xueshun Shen

China Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dehui Chen

China Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar

Zhaorong Zhuang

China Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar

Bo Huang

China Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar

Chao Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianglin Hu

China Meteorological Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge