Xingmin Gui
Beihang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xingmin Gui.
Asaio Journal | 2008
Yan Zhang; Zhao Zhan; Xingmin Gui; Hansong Sun; Hao Zhang; Zhe Zheng; Jian-Ye Zhou; Xiao-Dong Zhu; Guo-Rong Li; Shengshou Hu; Dong-Hai Jin
A fully implantable, axial flow blood pump has been developed in our hospital. Both in vitro and in vivo tests showed that the hemolysis and thrombus characteristics of the pump were in an acceptable but not in an ideal range. Computational fluid dynamics (CFD) and in vitro test results showed that the pump worked at off-design point with a low hydraulic efficiency; CFD analysis also showed regions of reverse flow in the diffuser, which not only decreases the pumps hydrodynamic efficiency, but also increases its overall potential for blood trauma and thrombosis. To make a blood pump atraumatic and nonthrombogenic, several methods were taken to reach a final model of the optimized blood pump using CFD, which decreased the rotational speed from 9,000 to 8,000 rpm, and the design flow rate from 11 to 6 L/min. More significantly, the flow separation and recirculation in the diffuser region were eliminated, which mitigated the traumatic and thrombus effect on blood. The acceptable results of the numerical simulations encourage additional in vitro and in vivo studies.
Artificial Organs | 2011
Xiaochen Yang; Yan Zhang; Xingmin Gui; Shengshou Hu
The advent of various technologies has allowed mechanical blood pumps to become more reliable and versatile in recent decades. In our study group, a novel structure of axial flow blood pump was developed for assisting the left ventricle. The design point of the left ventricular assist blood pump 25 (LAP-25) was chosen at 4 Lpm with 100 mm Hg according to our clinical practice. Computational fluid dynamics was used to design and analyze the performance of the LAP-25. In order to obtain a required hydraulic performance and a satisfactory hemolytic property in the LAP-25 of a smaller size, a novel structure was developed including an integrated shroud impeller, a streamlined impeller hub, and main impeller blades with splitter blades; furthermore, tandem cascades were introduced in designing the diffuser. The results of numerical simulation show the LAP-25 can generate flow rates of 3-5 Lpm at rotational speeds of 8500-10,500 rpm, producing pressure rises of 27.5-148.3 mm Hg with hydraulic efficiency points ranging from 13.4 to 27.5%. Moreover, the fluid field and the hemolytic property of the LAP-25 were estimated, and the mean hemolysis index of the pump was 0.0895% with Heusers estimated model. In conclusion, the design of the LAP-25 shows an acceptable result.
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition | 2011
Hailiang Jin; Donghai Jin; Fang Zhu; Ke Wan; Xingmin Gui
This paper presents the design of a highly loaded transonic two-stage fan using several advanced three-dimensional blading techniques including forward sweep and “hub bending” in rotors and several bowed configurations in stators. The effects of these blading techniques on the performance of the highly loaded transonic two-stage fan were investigated on the basis of three-dimensional Navier-Stokes predictions. The results indicate that forward sweep has insignificant impact on the total pressure ratio and adiabatic efficiency of the fan. The throttling range of the fan is found to be improved by forward sweep because the shock in the forward swept rotor is expelled later upstream to the leading edge than that in the unswept one. Hub bending design technique increases the efficiency in the hub region of R1 due to the reduction of the low momentum zone in the hub region near the trailing edge. The stator vane design has a pronounced impact on the performance of the fan. The total pressure ratio, adiabatic efficiency, and stall margin of the schemes with the bowed vanes are increased significantly compared to the scheme with the straight vanes. The large corner stall in the straight S1 vane is reduced effectively by the bowed S1 vanes. Moreover, the strong corner stall in the straight S2 vane is fully eliminated by the bowed S2 vanes. Among the bowed vane schemes, the scheme with positive bowed (P. B.) hub and negative bowed (N. B.) tip vanes has the best efficiency and stall margin performances thanks to the superiority of the performance over the midspan regions of the bowed vanes.Copyright
Asaio Journal | 2016
Guangmao Liu; Dong-Hai Jin; Xi-hang Jiang; Jian-Ye Zhou; Yan Zhang; Haibo Chen; Shengshou Hu; Xingmin Gui
The ventricular assist pumps do not always function at the design point; instead, these pumps may operate at unfavorable off-design points. For example, the axial ventricular assist pump FW-2, in which the design point is 5 L/min flow rate against 100 mm Hg pressure increase at 8,000 rpm, sometimes works at off-design flow rates of 1 to 4 L/min. The hemolytic performance of the FW-2 at both the design point and at off-design points was estimated numerically and tested in vitro. Flow characteristics in the pump were numerically simulated and analyzed with special attention paid to the scalar sheer stress and exposure time. An in vitro hemolysis test was conducted to verify the numerical results. The simulation results showed that the scalar shear stress in the rotor region at the 1 L/min off-design point was 70% greater than at the 5 L/min design point. The hemolysis index at the 1 L/min off-design point was 3.6 times greater than at the 5 L/min design point. The in vitro results showed that the normalized index of hemolysis increased from 0.017 g/100 L at the 5 L/min design point to 0.162 g/100 L at the 1 L/min off-design point. The hemolysis comparison between the different blood pump flow rates will be helpful for future pump design point selection and will guide the usage of ventricular assist pumps. The hemolytic performance of the blood pump at the working point in the clinic should receive more focus.
ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D | 2011
Xiaochen Yang; Yan Zhang; Xingmin Gui; Shengshou Hu
The heart failure patients supported by the mechanical rotary blood pumps have been validated and investigated in recent decades. A series of adult blood pumps have been investigated in our research group in the last several years and one of them is currently under clinical trials. This present paper aimed at analyzing a micro pediatric blood pump (MPBP) with Computational fluid dynamics (CFD) tool. MPBP is developed to assist the ventricular according to the practice of pediatric heart failure in Fuwai Hospital of Chinese Academy of Medical Sciences. The blade tip diameter of the MPBP is 10 mm. Some advanced structures proposed in our adult blood pumps were further improved in the MPBP and a cantilevered stator applied in the blood pump is a novel try. The results of the numerical simulation show that the MPBP can generate the flow rates of 0.74–3.21 lpm at the rotational speeds of 9,000–11,000 rpm, producing the pressure rises of 36.9–89.7 mmHg. The structural advantage, hydraulic performance and hemolytic property of the MPBP were analyzed in detail. Overall, the attempt of the cantilevered stator blade improved the performance of the blood pump effectively and the MPBP deserves a promising prospect.Copyright
International Journal of Artificial Organs | 2017
Guangmao Liu; Dong-Hai Jin; Jian-Ye Zhou; Xi-hang Jiang; Hansong Sun; Yan Zhang; Haibo Chen; Shengshou Hu; Xingmin Gui
A fully implantable axial left ventricular assist device LAP31 was developed for Chinese or other heart failure patients who need partial support. Based on the 5-Lpm total cardiac blood output of Chinese without heart failure disease, the design point of LAP31 was set to a flow rate of 3 Lpm with 100-mmHg pressure head. To achieve the required pressure head and good hemolytic performance, a structure that includes a spindly rotor hub and a diffuser with splitter and cantilevered main blades was developed. Computational fluid dynamics (CFD) was used to analyze the hydraulic and hemodynamic performance of LAP31. Then in vitro hydraulics experiments were conducted. The numerical simulation results show that LAP31 could generate a 1 to 8 Lpm flow rate with a 60.9 to 182.7 mmHg pressure head when the pump was rotating between 9,000 and 12,000 rpm. The average scalar shear stress of the blood pump was 21.7 Pa, and the average exposure time was 71.0 milliseconds. The mean hemolysis index of LAP31 obtained using Heusers hemolysis model and Giersiepens model was 0.220% and 3.89 × 105% respectively. After adding the splitter blades, the flow separation at the suction surface of the diffuser was reduced. The cantilever structure reduced the tangential velocity from 6.1 to 4.7–1.4 m/s within the blade gap by changing the blade gap from shroud to hub. Subsequently, the blood damage caused by shear stress was reduced. In conclusion, the hydraulic and hemolytic characteristics of the LAP31 are acceptable for partial support.
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014
Ke Wan; Mingzhi Tang; Donghai Jin; Xingmin Gui
This paper presents the relation between circumferential fluctuation and the geometric and flow parameters. The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations. Different types of compressor cascades are simulated and the circumferential fluctuation terms are extracted according to the definition of circumferential average. Three different blade profiles are chosen, including CDA, C4 and NACA65 profile, respectively. The peak value of circumferential fluctuation terms often occurs at the leading or the trailing edge and increases as the radius grows. Meanwhile, the circumferential fluctuation terms exist at the inlet of the blade which can be accurately calculated. 0°, 15° and 30° camber angles are chosen to study the influence of camber angle. When the camber angle is smaller, the flow is more uniform and therefore, the value of circumferential fluctuation is lower. Different incidence angles are compared to discuss the relationship between circumferential fluctuation and incidence angle. For specific term of circumferential fluctuations, the distribution curves are different.Copyright
Artificial Organs | 2007
Yan Zhang; Song Xue; Xingmin Gui; Hansong Sun; Hao Zhang; Xiao-Dong Zhu; Shengshou Hu
Chinese Journal of Aeronautics | 2015
Hao Chang; Fang Zhu; Donghai Jin; Xingmin Gui
International Journal of Artificial Organs | 2008
Yan Zhang; S.-S. Hu; Jian-Ye Zhou; Hansong Sun; H. Zhang; Zhe Zheng; X.-D. Zhu; G.-R. Li; Xingmin Gui; Z. Zhan; Dong-Hai Jin