Xingming Hao
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xingming Hao.
Environmental Monitoring and Assessment | 2009
Xingming Hao; Yaning Chen; Weihong Li
Based on data collected over 2 years of monitoring the lower reaches of the Tarim River, the groundwater table depth was divided into six classes; 0 to 2 m, 2 to 4 m, 4 to 6 m, 6 to 8 m, 8 to 10 m, >10 m. We investigated the vegetation in this area to measure the influence of groundwater table depth on plant diversity and species ecological niche. The results indicated that plant diversity was highest at the 2 to 4 m groundwater table depth, followed by that at 4 to 6 m, and then that at 0 to 2 m. When the groundwater depth dropped to below 6 m, species diversity decreased dramatically, and the slope of Hill’s index tended to level off. The ecological niche of the major species in this area initially expanded as the groundwater level dropped. The widest niche appeared at the 4 to 6 m groundwater table depth and gradually narrowed with deepening groundwater. Ecological niche analysis also revealed that the 4 to 6 m groundwater table depth was associated with the lowest degree of niche overlap and the richest variety of species. Our findings indicate that in the lower reaches of the Tarim River, the groundwater table depth must be a minimum of 6 m for vegetation restoration; it should be maintained at 2 to 4 m in the vicinity of the water path, and at 4 to 6 m for the rest of this arid area.
Scientific Reports | 2016
Xingming Hao; Weihong Li; Haijun Deng
This study revealed the influence of the oasis effect on summer temperatures based on MODIS Land Surface Temperature (LST) and meteorological data. The results showed that the oasis effect occurs primarily in the summer. For a single oasis, the maximum oasis cold island intensity based on LST (OCILST) was 3.82 °C and the minimum value was 2.32 °C. In terms of the annual change in OCILST, the mean value of all oases ranged from 2.47 °C to 3.56 °C from 2001 to 2013. Net radiation (Rn) can be used as a key predictor of OCILST and OCItemperature (OCI based on air temperature). On this basis, we reconstructed a long time series (1961–2014) of OCItemperature and Tbase(air temperature without the disturbance of oasis effect). Our results indicated that the reason for the increase in the observed temperatures was the significant decrease in the OCItemperature over the past 50 years. In arid regions, the data recorded in weather stations not only underestimated the mean temperature of the entire study area but also overestimated the increasing trend of the temperature. These discrepancies are due to the limitations in the spatial distribution of weather stations and the disturbance caused by the oasis effect.
Journal of Arid Land | 2016
Xingming Hao; Weihong Li
Oasis effect can improve the regional climate and habitability of an arid region. In this study, we explored the cold island effects of oases distributed along the edge of Tarim Basin by analyzing the oasis cold island effect (OCIE) intensity, spatial-temporal variation of OCIE, factors influencing the OCIE and impacts of OCIE on air temperature using geographical statistics and GIS methods based on the MODIS land surface temperature, land use/cover change (LUCC) and observed air temperature data. Results showed that all the oases in the Tarim Basin exhibited cold island effects, with the OCIE intensity highest in summer (−9.08°C), followed by autumn (−4.24°C) and spring (−3.85°C). The total area of oasis cold island (OCI) and the comprehensive OCIE index showed the same seasonal change trend as the OCIE intensity. However, the changing trends in areas of OCI with strong, medium and weak OCIEs were inconsistent across different seasons. Farmland and water areas were found to be the key contributors that affected the OCIE, and the area and aggregation metrics of these two land use/cover types directly contributed to the OCIE. By contrast, natural vegetation, such as forest and grassland, almost had no contribution to the OCIE. Simulation of observed air temperature data showed that if farmland is replaced by forest or grassland in the oasis, the mean, maximum and minimum air temperatures will increase significantly. This heating effect will be higher in summer (reaching 1.14°C to 2.08°C) and lower in spring and autumn. Moreover, the heating effect of farmland being replaced by forest will be higher than that of farmland being replaced by grassland. These results can provide a basis for understanding the cold island effect of oases in arid regions.
Water Resources Management | 2008
Xingming Hao; Yaning Chen; Changchun Xu; Weihong Li
Journal of Geographical Sciences | 2010
Changchun Xu; Yaning Chen; Yuhui Yang; Xingming Hao; Yongping Shen
Hydrological Processes | 2009
Xingming Hao; Weihong Li; Xiang Huang; Chenggang Zhu; Jianxin Ma
Journal of Arid Environments | 2010
Xingming Hao; Yaning Chen; Weihong Li; Bin Guo; Ruifeng Zhao
Environmental Earth Sciences | 2009
Xingming Hao; Yaning Chen; Weihong Li
Journal of Geographical Sciences | 2010
Huilan Sun; Yaning Chen; Weihong Li; Feng Li; Yapeng Chen; Xingming Hao; Yuhui Yang
Hydrological Processes | 2008
Yaning Chen; Zhonghe Pang; Xingming Hao; Changchun Xu; Yapeng Chen