Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xingtian Xu is active.

Publication


Featured researches published by Xingtian Xu.


Nature Medicine | 2011

Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α

Yi Liu; Lei Wang; Takashi Kikuiri; Kentaro Akiyama; Chider Chen; Xingtian Xu; Ruili Yang; WanJun Chen; Songlin Wang; Songtao Shi

Stem cell–based regenerative medicine is a promising approach in tissue reconstruction. Here we show that proinflammatory T cells inhibit the ability of exogenously added bone marrow mesenchymal stem cells (BMMSCs) to mediate bone repair. This inhibition is due to interferon γ (IFN-γ)–induced downregulation of the runt-related transcription factor 2 (Runx-2) pathway and enhancement of tumor necrosis factor α (TNF-α) signaling in the stem cells. We also found that, through inhibition of nuclear factor κB (NF-κB), TNF-α converts the signaling of the IFN-γ–activated, nonapoptotic form of TNF receptor superfamily member 6 (Fas) in BMMSCs to a caspase 3– and caspase 8–associated proapoptotic cascade, resulting in the apoptosis of these cells. Conversely, reduction of IFN-γ and TNF-α concentrations by systemic infusion of Foxp3+ regulatory T cells, or by local administration of aspirin, markedly improved BMMSC-based bone regeneration and calvarial defect repair in C57BL/6 mice. These data collectively show a previously unrecognized role of recipient T cells in BMMSC-based tissue engineering.


Cell Stem Cell | 2012

Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis

Kentaro Akiyama; Chider Chen; Dandan Wang; Xingtian Xu; Cunye Qu; Takayoshi Yamaza; Tao Cai; WanJun Chen; Lingyun Sun; Songtao Shi

Systemic infusion of bone marrow mesenchymal stem cells (BMMSCs) yields therapeutic benefit for a variety of autoimmune diseases, but the underlying mechanisms are poorly understood. Here we show that in mice systemic infusion of BMMSCs induced transient T cell apoptosis via the FAS ligand (FASL)-dependent FAS pathway and could ameliorate disease phenotypes in fibrillin-1 mutated systemic sclerosis (SS) and dextran-sulfate-sodium-induced experimental colitis. FASL(-/-) BMMSCs did not induce T cell apoptosis in recipients, and could not ameliorate SS and colitis. Mechanistic analysis revealed that FAS-regulated monocyte chemotactic protein 1 (MCP-1) secretion by BMMSCs recruited T cells for FASL-mediated apoptosis. The apoptotic T cells subsequently triggered macrophages to produce high levels of TGFβ, which in turn led to the upregulation of CD4(+)CD25(+)Foxp3(+) regulatory T cells and, ultimately, immune tolerance. These data therefore demonstrate a previously unrecognized mechanism underlying BMMSC-based immunotherapy involving coupling via FAS/FASL to induce T cell apoptosis.


Biomaterials | 2013

Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering

Alireza Moshaverinia; Sahar Ansari; Chider Chen; Xingtian Xu; Kentaro Akiyama; Malcolm L. Snead; Homayoun H. Zadeh; Songtao Shi

Recently, it has been shown that tethered anti-BMP2 monoclonal antibodies (mAbs) can trap BMP ligands and thus provide BMP inductive signals for osteo-differentiation of progenitor cells. The objectives of this study were to: (1) develop a co-delivery system based on murine anti-BMP2 mAb-loaded alginate microspheres encapsulating human bone marrow mesenchymal stem cells (hBMMSCs); and (2) investigate osteogenic differentiation of encapsulated stem cells in alginate microspheres in vitro and in vivo. Alginate microspheres of 1 ± 0.1 mm diameter were fabricated with 2 × 10(6) hBMMSCs per mL of alginate. Critical-size calvarial defects (5 mm diameter) were created in immune-compromised mice and alginate microspheres preloaded with anti-BMP mAb encapsulating hBMMSCs were transplanted into defect sites. Alginate microspheres pre-loaded with isotype-matched non-specific antibody were used as the negative control. After 8 weeks, micro CT and histologic analyses were used to analyze bone formation. In vitro analysis demonstrated that anti-BMP2 mAbs tethered BMP2 ligands that can activate the BMP receptors on hBMMSCs. The co-delivery system described herein, significantly enhanced hBMMSC-mediated osteogenesis, as confirmed by the presence of BMP signal pathway-activated osteoblast determinants Runx2 and ALP. Our results highlight the importance of engineering the microenvironment for stem cells, and particularly the value of presenting inductive signals for osteo-differentiation of hBMMSCs by tethering BMP ligands using mAbs. This strategy of engineering the microenvironment with captured BMP signals is a promising modality for repair and regeneration of craniofacial, axial and appendicular bone defects.


Journal of Dental Research | 2013

Gingivae Contain Neural-crest- and Mesoderm-derived Mesenchymal Stem Cells

Xingtian Xu; Chider Chen; Kentaro Akiyama; Yang Chai; Anh D. Le; Z. Wang; Songtao Shi

Gingivae represent a unique soft tissue that serves as a biological barrier to cover the oral cavity side of the maxilla and mandible. Recently, the gingivae were identified as containing mesenchymal stem cells (GMSCs). However, it is unknown whether the GMSCs are derived from cranial neural crest cells (CNCC) or the mesoderm. In this study, we show that around 90% of GMSCs are derived from CNCC and 10% from the mesoderm. In comparison with mesoderm MSCs (M-GMSCs), CNCC-derived GMSCs (N-GMSCs) show an elevated capacity to differentiate into neural cells and chondrocytes and induce activated T-cell apoptosis in vitro. When transplanted into mice with dextran sulfate sodium (DSS)-induced colitis, N-GMSCs showed superior effects in ameliorating inflammatory-related disease phenotype in comparison with the M-GMSC treatment group. Mechanistically, the increased immunomodulatory effect of N-GMSCs is associated with up-regulated expression of FAS ligand (FASL), a transmembrane protein that plays an important role in MSC-based immunomodulation. In summary, our study indicates that the gingivae contain both neural-crest- and mesoderm-derived MSCs with distinctive stem cell properties.


Biomaterials | 2014

Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration.

Alireza Moshaverinia; Xingtian Xu; Chider Chen; Sahar Ansari; Homayoun H. Zadeh; Malcolm L. Snead; Songtao Shi

Tendon injuries are often associated with significant dysfunction and disability due to tendinous tissues very limited self-repair capacity and propensity for scar formation. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material present an alternative therapeutic option for tendon repair/regeneration that may be advantageous compared to other current treatment modalities. The MSC delivery vehicle is the principal determinant for successful implementation of MSC-mediated regenerative therapies. In the current study, a co-delivery system based on TGF-β3-loaded RGD-coupled alginate microspheres was developed for encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs). The capacity of encapsulated dental MSCs to differentiate into tendon tissue was investigated in vitro and in vivo. Encapsulated dental-derived MSCs were transplanted subcutaneously into immunocompromised mice. Our results revealed that after 4 weeks of differentiation in vitro, PDLSCs and GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited high levels of mRNA expression for gene markers related to tendon regeneration (Scx, DCn, Tnmd, and Bgy) via qPCR measurement. In a corresponding in vivo animal model, ectopic neo-tendon regeneration was observed in subcutaneous transplanted MSC-alginate constructs, as confirmed by histological and immunohistochemical staining for protein markers specific for tendons. Interestingly, in our quantitative PCR and in vivo histomorphometric analyses, PDLSCs showed significantly greater capacity for tendon regeneration than GMSCs or hBMMSCs (P < 0.05). Altogether, these findings indicate that periodontal ligament and gingival tissues can be considered as suitable stem cell sources for tendon engineering. PDLSCs and GMSCs encapsulated in TGF-β3-loaded RGD-modified alginate microspheres are promising candidates for tendon regeneration.


Acta Biomaterialia | 2013

Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

Alireza Moshaverinia; Xingtian Xu; Chider Chen; Kentaro Akiyama; Malcolm L. Snead; Songtao Shi

Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs.


Journal of Biomedical Materials Research Part A | 2013

Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering

Alireza Moshaverinia; Chider Chen; Kentaro Akiyama; Xingtian Xu; Winston W.L. Chee; Scott R. Schricker; Songtao Shi

Bone grafts are currently the major family of treatment options in modern reconstructive dentistry. As an alternative, stem cell-scaffold constructs seem to hold promise for bone tissue engineering. However, the feasibility of encapsulating dental-derived mesenchymal stem cells in scaffold biomaterials such as alginate hydrogel remains to be tested. The objectives of this study were, therefore, to: (1) develop an injectable scaffold based on oxidized alginate microbeads encapsulating periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs); and (2) investigate the cell viability and osteogenic differentiation of the stem cells in the microbeads both in vitro and in vivo. Microbeads with diameters of 1 ± 0.1 mm were fabricated with 2 × 10(6) stem cells/mL of alginate. Microbeads containing PDLSCs, GMSCs, and human bone marrow mesenchymal stem cells as a positive control were implanted subcutaneously and ectopic bone formation was analyzed by micro CT and histological analysis at 8-weeks postimplantation. The encapsulated stem cells remained viable after 4 weeks of culturing in osteo-differentiating induction medium. Scanning electron microscopy and X-ray diffraction results confirmed that apatitic mineral was deposited by the stem cells. In vivo, ectopic mineralization was observed inside and around the implanted microbeads containing the immobilized stem cells. These findings demonstrate for the first time that immobilization of PDLSCs and GMSCs in alginate microbeads provides a promising strategy for bone tissue engineering.


Journal of Dental Research | 2008

Epithelial Fibroblast Growth Factor Receptor 1 Regulates Enamel Formation

Kazunori Takamori; Ryoichi Hosokawa; Xingtian Xu; X. Deng; Pablo Bringas; Yang Chai

The interaction between epithelial and mesenchymal tissues plays a critical role in the development of organs such as teeth, lungs, and hair. During tooth development, fibroblast growth factor (FGF) signaling is critical for regulating reciprocal epithelial and mesenchymal interactions. FGF signaling requires FGF ligands and their receptors (FGFRs). In this study, we investigated the role of epithelial FGF signaling in tooth development, using the Cre-loxp system to create tissue-specific inactivation of Fgfr1 in mice. In K14-Cre;Fgfr1 fl/fl mice, the apical sides of enamel-secreting ameloblasts failed to adhere properly to each other, although ameloblast differentiation was unaffected at early stages. Prior to eruption, enamel structure was compromised in the K14-Cre;Fgfr1 fl/fl mice and displayed severe enamel defects that mimic amelogenesis imperfecta (AI), with a rough, irregular enamel surface. These results suggest that there is a cell-autonomous requirement for FGF signaling in the dental epithelium during enamel formation. Loss of Fgfr1 affects ameloblast organization at the enamel-secretory stage and, hence, the formation of enamel.


Embo Molecular Medicine | 2014

Telomerase governs immunomodulatory properties of mesenchymal stem cells by regulating FAS ligand expression

Chider Chen; Kentaro Akiyama; Takayoshi Yamaza; Yong Ouk You; Xingtian Xu; Bei Li; Yimin Zhao; Songtao Shi

Bone marrow mesenchymal stem cells (BMMSCs) are capable of differentiating into multiple cell types and regulating immune cell response. However, the mechanisms that govern the immunomodulatory properties of BMMSCs are still not fully elucidated. Here we show that telomerase‐deficient BMMSCs lose their capacity to inhibit T cells and ameliorate the disease phenotype in systemic sclerosis mice. Restoration of telomerase activity by telomerase reverse transcriptase (TERT) transfection in TERT−/− BMMSCs rescues their immunomodulatory functions. Mechanistically, we reveal that TERT, combined with β‐catenin and BRG1, serves as a transcriptional complex, which binds the FAS ligand (FASL) promoter to upregulate FASL expression, leading to an elevated immunomodulatory function. To test the translational value of these findings in the context of potential clinical therapy, we used aspirin treatment to upregulate telomerase activity in BMMSCs, and found a significant improvement in the immunomodulatory capacity of BMMSCs. Taken together, these findings identify a previously unrecognized role of TERT in improving the immunomodulatory capacity of BMMSCs, suggesting that aspirin treatment is a practical approach to significantly reduce cell dosage in BMMSC‐based immunotherapies.


Journal of Dental Research | 2015

Acetylsalicylic Acid Treatment Improves Differentiation and Immunomodulation of SHED

Ying Liu; Chider Chen; Shuanglong Liu; D. Liu; Xingtian Xu; X. Chen; Shan Rong Shi

Stem cells from exfoliated deciduous teeth (SHED) possess multipotent differentiation and immunomodulatory properties. They have been used for orofacial bone regeneration and autoimmune disease treatment. In this study, we show that acetylsalicylic acid (ASA) treatment is able to significantly improve SHED-mediated osteogenic differentiation and immunomodulation. Mechanistically, ASA treatment upregulates the telomerase reverse transcriptase (TERT)/Wnt/β-catenin cascade, leading to improvement of SHED-mediated bone regeneration, and also upregulates TERT/FASL signaling, leading to improvement of SHED-mediated T-cell apoptosis and ameliorating disease phenotypes in dextran sodium sulfate–induced colitis mice. These data indicate that ASA treatment is a practical approach to improving SHED-based cell therapy.

Collaboration


Dive into the Xingtian Xu's collaboration.

Top Co-Authors

Avatar

Chider Chen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Songtao Shi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alireza Moshaverinia

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kentaro Akiyama

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Sahar Ansari

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Homayoun H. Zadeh

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Malcolm L. Snead

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anh D. Le

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge