Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinguo Sun is active.

Publication


Featured researches published by Xinguo Sun.


American Journal of Pathology | 2012

Chronic Alcohol Exposure Stimulates Adipose Tissue Lipolysis in Mice: Role of Reverse Triglyceride Transport in the Pathogenesis of Alcoholic Steatosis

Wei Zhong; Yantao Zhao; Yunan Tang; Xiaoli Wei; Xue Shi; Wenlong Sun; Xiuhua Sun; Xinmin Yin; Xinguo Sun; Seongho Kim; Craig J. McClain; Xiang Zhang; Zhanxiang Zhou

Alcohol consumption induces liver steatosis; therefore, this study investigated the possible role of adipose tissue dysfunction in the pathogenesis of alcoholic steatosis. Mice were pair-fed an alcohol or control liquid diet for 8 weeks to evaluate the alcohol effects on lipid metabolism at the adipose tissue-liver axis. Chronic alcohol exposure reduced adipose tissue mass and adipocyte size. Fatty acid release from adipose tissue explants was significantly increased in alcohol-fed mice in association with the activation of adipose triglyceride lipase and hormone-sensitive lipase. Alcohol exposure induced insulin intolerance and inactivated adipose protein phosphatase 1 in association with the up-regulation of phosphatase and tensin homolog (PTEN) and suppressor of cytokine signaling 3 (SOCS3). Alcohol exposure up-regulated fatty acid transport proteins and caused lipid accumulation in the liver. To define the mechanistic link between adipose triglyceride loss and hepatic triglyceride gain, mice were first administered heavy water for 5 weeks to label adipose triglycerides with deuterium, and then pair-fed alcohol or control diet for 2 weeks. Deposition of deuterium-labeled adipose triglycerides in the liver was analyzed using Fourier transform ion cyclotron mass spectrometry. Alcohol exposure increased more than a dozen deuterium-labeled triglyceride molecules in the liver by up to 6.3-fold. These data demonstrate for the first time that adipose triglycerides due to alcohol-induced hyperlipolysis are reverse transported and deposited in the liver.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone improves lipid homeostasis at the adipose tissue-liver axis in ethanol-fed mice

Xiuhua Sun; Yunan Tang; Xiaobing Tan; Qiong Li; Wei Zhong; Xinguo Sun; Wei Jia; Craig J. McClain; Zhanxiang Zhou

The development of alcohol-induced fatty liver is associated with a reduction of white adipose tissue (WAT). Peroxisome proliferator-activated receptor (PPAR)-γ prominently distributes in the WAT and plays a crucial role in maintaining adiposity. The present study investigated the effects of PPAR-γ activation by rosiglitazone on lipid homeostasis at the adipose tissue-liver axis. Adult C57BL/6 male mice were pair fed liquid diet containing ethanol or isocaloric maltose dextrin for 8 wk with or without rosiglitazone supplementation to ethanol-fed mice for the last 3 wk. Ethanol exposure downregulated adipose PPAR-γ gene and reduced the WAT mass in association with induction of inflammation, which was attenuated by rosiglitazone. Ethanol exposure stimulated lipolysis but reduced fatty acid uptake capacity in association with dysregulation of lipid metabolism genes. Rosiglitazone normalized adipose gene expression and corrected ethanol-induced lipid dyshomeostasis. Ethanol exposure induced steatosis and upregulated inflammatory genes in the liver, which were attenuated by rosiglitazone. Hepatic peroxisomal fatty acid β-oxidation was suppressed by ethanol in associated with inhibition of acyl-coenzyme A oxidase 1. Rosiglitazone elevated plasma adiponectin level and normalized peroxisomal fatty acid β-oxidation rate. However, rosiglitazone did not affect ethanol-reduced very low-density lipoprotein secretion from the liver. These results demonstrated that activation of PPAR-γ by rosiglitazone reverses ethanol-induced adipose dysfunction and lipid dyshomeostasis at the WAT-liver axis, thereby abrogating alcoholic fatty liver.


PLOS ONE | 2013

Dietary Zinc Deficiency Exaggerates Ethanol-Induced Liver Injury in Mice: Involvement of Intrahepatic and Extrahepatic Factors

Wei Zhong; Yantao Zhao; Xinguo Sun; Zhenyuan Song; Craig J. McClain; Zhanxiang Zhou

Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency.


Journal of Hepatology | 2015

Pharmacological activation of aldehyde dehydrogenase 2 by Alda-1 reverses alcohol-induced hepatic steatosis and cell death in mice

Wei Zhong; Wenliang Zhang; Qiong Li; Guoxiang Xie; Qian Sun; Xiuhua Sun; Xiaobing Tan; Xinguo Sun; Wei Jia; Zhanxiang Zhou

BACKGROUND & AIMS Effective therapies for alcoholic liver disease are currently unavailable. The present study tested the efficacy of Alda-1, a specific aldehyde dehydrogenase 2 (ALDH2) activator, in treating alcoholic liver disease. METHODS Male C57BL/6J mice were exposed to alcohol for a time-course study on aldehyde metabolism. The specificity and efficacy of Alda-1 on activating hepatic ALDH2 and aldehyde clearance were determined by acute treatments. Then, mice were fed alcohol for 8 weeks with Alda-1 administration for the last 10 days to test the therapeutic potential of Alda-1. Lastly, H4IIEC3 cells were treated with ethanol, acetaldehyde, or 4-hydroxynonenal to define the link between aldehydes and hepatotoxicity. RESULTS Alcohol feeding for 8 weeks induced hepatic ALDH2 dysfunction and aldehyde accumulation. One dose of Alda-1 administration elevated hepatic ALDH activity, which was blocked by the specific ALDH2 inhibitor, daidzin. Alda-1 accelerated acetaldehyde clearance after acute alcohol intoxication. Alda-1 treatment in the 8-week alcohol feeding model reversed liver damage along with reduction of hepatic aldehydes. Alda-1 re-activated transcription factors, upregulated fatty acid oxidation enzymes, and reversed steatosis. Alcohol-induced endoplasmic reticulum stress and apoptotic cell death were also attenuated by Alda-1. Acetaldehyde or 4-hydroxynonenal treatment to H4IIEC3 cells inactivated transcription factors and induced endoplasmic reticulum stress and apoptosis, while ethanol per se showed limited effects. CONCLUSIONS Pharmacological activation of ALDH2 by Alda-1 reversed alcoholic steatosis and apoptosis through accelerating aldehyde clearance. This study indicates that ALDH2 is a promising molecular target and Alda-1 has therapeutic potential for treating alcoholic liver disease.


PLOS ONE | 2013

High Fat Diet Feeding Exaggerates Perfluorooctanoic Acid-Induced Liver Injury in Mice via Modulating Multiple Metabolic Pathways

Xiaobing Tan; Guoxiang Xie; Xiuhua Sun; Qiong Li; Wei Zhong; Peter Qiao; Xinguo Sun; Wei Jia; Zhanxiang Zhou

High fat diet (HFD) is closely linked to a variety of health issues including fatty liver. Exposure to perfluorooctanoic acid (PFOA), a synthetic perfluorinated carboxylic acid, also causes liver injury. The present study investigated the possible interactions between high fat diet and PFOA in induction of liver injury. Mice were pair-fed a high-fat diet (HFD) or low fat control with or without PFOA administration at 5 mg/kg/day for 3 weeks. Exposure to PFOA alone caused elevated plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels and increased liver weight along with reduced body weight and adipose tissue mass. HFD alone did not cause liver damage, but exaggerated PFOA-induced hepatotoxicity as indicated by higher plasma ALT and AST levels, and more severe pathological changes including hepatocyte hypertrophy, lipid droplet accumulation and necrosis as well as inflammatory cell infiltration. These additive effects of HFD on PFOA-induced hepatotoxicity correlated with metabolic disturbance in liver and blood as well as up-regulation of hepatic proinflammatory cytokine genes. Metabolomic analysis demonstrated that both serum and hepatic metabolite profiles of PFOA, HFD, or HFD-PFOA group were clearly differentiated from that of controls. PFOA affected more hepatic metabolites than HFD, but HFD showed positive interaction with PFOA on fatty acid metabolites including long chain fatty acids and acylcarnitines. Taken together, dietary high fat potentiates PFOA-induced hepatic lipid accumulation, inflammation and necrotic cell death by disturbing hepatic metabolism and inducing inflammation. This study demonstrated, for the first time, that HFD increases the risk of PFOA in induction of hepatotoxicity.


American Journal of Pathology | 2012

Leptin Deficiency Contributes to the Pathogenesis of Alcoholic Fatty Liver Disease in Mice

Xiaobing Tan; Xiuhua Sun; Qiong Li; Yantao Zhao; Wei Zhong; Xinguo Sun; Wei Jia; Craig J. McClain; Zhanxiang Zhou

White adipose tissue (WAT) secretes adipokines, which critically regulate lipid metabolism. The present study investigated the effects of alcohol on adipokines and the mechanistic link between adipokine dysregulation and alcoholic fatty liver disease. Mice were fed alcohol for 2, 4, or 8 weeks to document changes in adipokines over time. Alcohol exposure reduced WAT mass and body weight in association with hepatic lipid accumulation. The plasma adiponectin concentration was increased at 2 weeks, but declined to normal at 4 and 8 weeks. Alcohol exposure suppressed leptin gene expression in WAT and reduced the plasma leptin concentration at all times measured. There is a highly positive correlation between plasma leptin concentration and WAT mass or body weight. To determine whether leptin deficiency mediates alcohol-induced hepatic lipid dyshomeostasis, mice were fed alcohol for 8 weeks with or without leptin administration for the last 2 weeks. Leptin administration normalized the plasma leptin concentration and reversed alcoholic fatty liver. Alcohol-perturbed genes involved in fatty acid β-oxidation, very low-density lipoprotein secretion, and transcriptional regulation were attenuated by leptin. Leptin also normalized alcohol-reduced phosphorylation levels of signal transducer Stat3 and adenosine monophosphate-activated protein kinase. These data demonstrated for the first time that leptin deficiency in association with WAT mass reduction contributes to the pathogenesis of alcoholic fatty liver disease.


Hepatology | 2014

Nuclear factor (erythroid-derived 2)-like 2 activation-induced hepatic very-low-density lipoprotein receptor overexpression in response to oxidative stress contributes to alcoholic liver disease in mice

Zhigang Wang; Xiaobing Dou; Songtao Li; Ximei Zhang; Xinguo Sun; Zhanxiang Zhou; Zhenyuan Song

Chronic alcohol consumption leads to hypertriglyceridemia, which is positively associated with alcoholic liver disease (ALD). However, whether and how it contributes to the development of fatty liver and liver injury are largely unknown. In this study we demonstrate that chronic alcohol exposure differently regulates the expression of very‐low‐density lipoprotein receptor (VLDLR) in adipose tissue and the liver. Whereas adipose tissue VLDLR is significantly down‐regulated, its hepatic expression is dramatically increased after chronic alcohol feeding. While HepG2 cells stably overexpressing VLDLR manifests increased intracellular triglyceride accumulation, VLDLR‐deficient mice are protective against fatty liver and liver injury after chronic alcohol exposure. Mechanistic investigations using both in vitro and in vivo systems reveal that oxidative stress‐induced nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) activation plays a critical role in alcohol‐induced VLDLR up‐regulation in hepatocytes, but not in adipocytes. Oxidative stress enhances VLDLR gene expression and protein abundance in primary hepatocytes, concomitant with the Nrf2 activation. Conversely, Nrf2 gene silencing abrogates oxidative stress‐induced VLDLR up‐regulation in the liver, but not in adipose tissue. In mice, alcohol exposure induces hepatic oxidative stress and Nrf2 activation. Supplementation of N‐acetylcysteine alleviates fatty liver and liver injury induced by chronic alcohol exposure, which is associated with suppressed Nrf2 activation and attenuated VLDLR increase in the liver. Furthermore, in comparison to wild‐type counterparts, Nrf2‐deficient mice demonstrate attenuated hepatic VLDLR expression increase in response to chronic alcohol exposure. Conclusion: Chronic alcohol consumption differently alters VLDLR expression in adipose tissue and the liver. Oxidative stress‐induced Nrf2 activation is mechanistically involved in VLDLR overexpression in hepatocytes in response to chronic alcohol consumption. Hepatic VLDLR overexpression plays an important role in the pathogenesis of ALD. (Hepatology 2014;59:1381‐1392)


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats

Wei Zhong; Qiong Li; Guoxiang Xie; Xiuhua Sun; Xiaobing Tan; Xinguo Sun; Wei Jia; Zhanxiang Zhou

Endotoxemia is a causal factor in the development of alcoholic liver injury. The present study aimed at determining the interactions of ethanol with different fat sources at the gut-liver axis. Male Sprague-Dawley rats were pair fed control or ethanol liquid diet for 8 wk. The liquid diets were based on a modified Lieber-DeCarli formula, with 30% total calories derived from corn oil (rich in polyunsaturated fatty acids). To test the effects of saturated fats, corn oil in the ethanol diet was replaced by either cocoa butter (CB, rich in long-chain saturated fatty acids) or medium-chain triglycerides (MCT, exclusively medium-chain saturated fatty acids). Ethanol feeding increased hepatic lipid accumulation and inflammatory cell infiltration and perturbed hepatic and serum metabolite profiles. Ethanol feeding with CB or MCT alleviated ethanol-induced liver injury and attenuated ethanol-induced metabolic perturbation. Both CB and MCT also normalized ethanol-induced hepatic macrophage activation, cytokine expression, and neutrophil infiltration. Ethanol feeding elevated serum endotoxin level, which was normalized by MCT but not CB. In accordance, ethanol-induced downregulations of intestinal occludin and zonula occludens-1 were normalized by MCT but not CB. However, CB normalized ethanol-increased hepatic endotoxin level in association with upregulation of an endotoxin detoxifying enzyme, argininosuccinate synthase 1 (ASS1). Knockdown ASS1 in H4IIEC3 cells resulted in impaired endotoxin clearance and upregulated cytokine expression. These data demonstrate that the protection of saturated fats against alcohol-induced liver injury occur via different actions at the gut-liver axis and are chain length dependent.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Dysregulation of hepatic zinc transporters in a mouse model of alcoholic liver disease

Qian Sun; Qiong Li; Wei Zhong; Jiayang Zhang; Xiuhua Sun; Xiaobing Tan; Xinmin Yin; Xinguo Sun; Xiang Zhang; Zhanxiang Zhou

Zinc deficiency is a consistent phenomenon observed in patients with alcoholic liver disease, but the mechanisms have not been well defined. The objective of this study was to determine if alcohol alters hepatic zinc transporters in association with reduction of hepatic zinc levels and if oxidative stress mediates the alterations of zinc transporters. C57BL/6 mice were pair-fed with the Lieber-DeCarli control or ethanol diets for 2, 4, or 8 wk. Chronic alcohol exposure reduced hepatic zinc levels, but increased plasma and urine zinc levels, at all time points. Hepatic zinc finger proteins, peroxisome proliferator-activated receptor-α (PPAR-α) and hepatocyte nuclear factor 4α (HNF-4α), were downregulated in ethanol-fed mice. Four hepatic zinc transporter proteins showed significant alterations in ethanol-fed mice compared with the controls. ZIP5 and ZIP14 proteins were downregulated, while ZIP7 and ZnT7 proteins were upregulated, by ethanol exposure at all time points. Immunohistochemical staining demonstrated that chronic ethanol exposure upregulated cytochrome P-450 2E1 and caused 4-hydroxynonenal accumulation in the liver. For the in vitro study, murine FL-83B hepatocytes were treated with 5 μM 4-hydroxynonenal or 100 μM hydrogen peroxide for 72 h. The results from in vitro studies demonstrated that 4-hydroxynonenal treatment altered ZIP5 and ZIP7 protein abundance, and hydrogen peroxide treatment changed ZIP7, ZIP14, and ZnT7 protein abundance. These results suggest that chronic ethanol exposure alters hepatic zinc transporters via oxidative stress, which might account for ethanol-induced hepatic zinc deficiency.


Journal of Nutrition | 2015

Preventing Gut Leakiness and Endotoxemia Contributes to the Protective Effect of Zinc on Alcohol-Induced Steatohepatitis in Rats

Wei Zhong; Qiong Li; Qian Sun; Wenliang Zhang; Jiayang Zhang; Xinguo Sun; Xinmin Yin; Xiang Zhang; Zhanxiang Zhou

BACKGROUND Zinc deficiency has been well documented in alcoholic liver disease. OBJECTIVE This study was undertaken to determine whether dietary zinc supplementation provides beneficial effects in treating alcohol-induced gut leakiness and endotoxemia. METHODS Male Sprague Dawley rats were divided into 3 groups and pair-fed (PF) Lieber-DeCarli liquid diet for 8 wk: 1) control (PF); 2) alcohol-fed (AF; 5.00-5.42% wt:vol ethanol); and 3) AF with zinc supplementation (AF/Zn) at 220 ppm zinc sulfate heptahydrate. The PF and AF/Zn groups were pair-fed with the AF group. Hepatic inflammation and endotoxin signaling were determined by immunofluorescence and quantitative polymerase chain reaction (qPCR). Alterations in intestinal tight junctions and aldehyde dehydrogenases were assessed by qPCR and Western blot analysis. RESULTS The AF rats had greater macrophage activation and cytokine production (P < 0.05) in the liver compared with the PF rats, whereas the AF/Zn rats showed no significant differences (P > 0.05). Plasma endotoxin concentrations of the AF rats were 136% greater than those of the PF rats, whereas the AF/Zn rats did not differ from the PF rats. Ileal permeability was 255% greater in the AF rats and 19% greater in the AF/Zn rats than in the PF rats. The AF group had reduced intestinal claudin-1, occludin, and zona occludens-1 (ZO-1) expression, and the AF/Zn group had upregulated claudin-1 and ZO-1 expression (P < 0.05) compared with the PF group. The intestinal epithelial expression and activity of aldehyde dehydrogenases were elevated (P < 0.05) in the AF/Zn rats compared with those of the AF rats. Furthermore, the ileal expression and function of hepatocyte nuclear factor 4α, which was impaired in the AF group, was significantly elevated in the AF/Zn group compared with the PF group. CONCLUSIONS The results demonstrate that attenuating hepatic endotoxin signaling by preserving the intestinal barrier contributes to the protective effect of zinc on alcohol-induced steatohepatitis in rats.

Collaboration


Dive into the Xinguo Sun's collaboration.

Top Co-Authors

Avatar

Zhanxiang Zhou

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Wei Zhong

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Qian Sun

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Qiong Li

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Wenliang Zhang

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Xiaobing Tan

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Xiuhua Sun

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Yantao Zhao

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Wei Jia

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge