Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinhe Bao is active.

Publication


Featured researches published by Xinhe Bao.


Nature Communications | 2012

Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum

Libo Gao; Wencai Ren; Huilong Xu; Li Jin; Zhenxing Wang; Teng Ma; Lai-Peng Ma; Zhiyong Zhang; Qiang Fu; Lian-Mao Peng; Xinhe Bao; Hui-Ming Cheng

Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm2 V−1 s−1 under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.


Angewandte Chemie | 2013

Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction

Dehui Deng; Liang Yu; Xiaoqi Chen; Guoxiong Wang; Li Jin; Xiulian Pan; Jiao Deng; Gongquan Sun; Xinhe Bao

Chainmail for catalysts: a catalyst with iron nanoparticles confined inside pea-pod-like carbon nanotubes exhibits a high activity and remarkable stability as a cathode catalyst in polymer electrolyte membrane fuel cells (PEMFC), even in presence of SO(2). The approach offers a new route to electro- and heterogeneous catalysts for harsh conditions.


Science | 2010

Interface-Confined Ferrous Centers for Catalytic Oxidation

Qiang Fu; Wei-Xue Li; Yunxi Yao; Hongyang Liu; Hai-Yan Su; Ding Ma; Xiang-Kui Gu; Limin Chen; Zhen Wang; Hui Zhang; Bing Wang; Xinhe Bao

Catalysis at the Edge Many catalysts in solution, such as metalloenzymes and homogeneous metal complexes, create active sites where the metal ion is available to bind and activate reactants. Such coordinately unsaturated ferrous sites, or CUFs, have been created in a supported heterogeneous catalyst by Fu et al. (p. 1141). Ferrous oxide islands grown on platinum single-crystal surfaces were much more reactive for CO oxidation at low temperatures than more oxidized ferric islands. This difference arose from sites at the interface between the islands and the Pt surface that activated oxygen. Silica-supported Pt-Fe catalysts were active for CO removal from hydrogen streams, a reaction critical for maintaining the activity of fuel cells. The interface between ferrous oxide islands and a platinum support contains sites that activate dioxygen for catalytic reactions. Coordinatively unsaturated ferrous (CUF) sites confined in nanosized matrices are active centers in a wide range of enzyme and homogeneous catalytic reactions. Preparation of the analogous active sites at supported catalysts is of great importance in heterogeneous catalysis but remains a challenge. On the basis of surface science measurements and density functional calculations, we show that the interface confinement effect can be used to stabilize the CUF sites by taking advantage of strong adhesion between ferrous oxides and metal substrates. The interface-confined CUF sites together with the metal supports are active for dioxygen activation, producing reactive dissociated oxygen atoms. We show that the structural ensemble was highly efficient for carbon monoxide oxidation at low temperature under typical operating conditions of a proton-exchange membrane fuel cell.


Journal of the American Chemical Society | 2008

Effect of Confinement in Carbon Nanotubes on the Activity of Fischer−Tropsch Iron Catalyst

Wei Chen; Zhongli Fan; Xiulian Pan; Xinhe Bao

Following our previous findings that confinement within carbon nanotubes (CNTs) can modify the redox properties of encapsulated iron oxides, we demonstrate here how this can affect the catalytic reactivity of iron catalysts in Fischer-Tropsch synthesis (FTS). The investigation, using in situ XRD under conditions close to the reaction conditions, reveals that the distribution of iron carbide and oxide phases is modulated in the CNT-confined system. The iron species encapsulated inside CNTs prefer to exist in a more reduced state, tending to form more iron carbides under the reaction conditions, which have been recognized to be essential to obtain high FTS activity. The relative ratio of the integral XRD peaks of iron carbide (Fe(x)C(y)) to oxide (FeO) is about 4.7 for the encapsulated iron catalyst in comparison to 2.4 for the iron catalyst dispersed on the outer walls of CNTs under the same conditions. This causes a remarkable modification of the catalytic performance. The yield of C5+ hydrocarbons over the encapsulated iron catalyst is twice that over iron catalyst outside CNTs and more than 6 times that over activated-carbon-supported iron catalyst. The catalytic activity enhancement is attributed to the effect of confinement of the iron catalyst within the CNT channels. As demonstrated by temperature-programmed reduction in H2 and in CO atmospheres, the reducibility of the iron species is significantly improved when they are confined. The ability to modify the redox properties via confinement in CNTs is expected to be of significance for many catalytic reactions, which are highly dependent on the redox state of the active components. Furthermore, diffusion and aggregation of the iron species through the reduction and reaction have been observed, but these are retarded inside CNTs due to the spatial restriction of the channels.


Nature Nanotechnology | 2016

Catalysis with two-dimensional materials and their heterostructures

Dehui Deng; K. S. Novoselov; Qiang Fu; Nanfeng Zheng; Zhong-Qun Tian; Xinhe Bao

Graphene and other 2D atomic crystals are of considerable interest in catalysis because of their unique structural and electronic properties. Over the past decade, the materials have been used in a variety of reactions, including the oxygen reduction reaction, water splitting and CO2 activation, and have been shown to exhibit a range of catalytic mechanisms. Here, we review recent advances in the use of graphene and other 2D materials in catalytic applications, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals). We discuss the advantages of these materials for catalysis and the different routes available to tune their electronic states and active sites. We also explore the future opportunities of these catalytic materials and the challenges they face in terms of both fundamental understanding and the development of industrial applications.


Angewandte Chemie | 2015

Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction

Jiao Deng; Pengju Ren; Dehui Deng; Xinhe Bao

Major challenges encountered when trying to replace precious-metal-based electrocatalysts of the hydrogen evolution reaction (HER) in acidic media are related to the low efficiency and stability of non-precious-metal compounds. Therefore, new concepts and strategies have to be devised to develop electrocatalysts that are based on earth-abundant materials. Herein, we report a hierarchical architecture that consists of ultrathin graphene shells (only 1-3 layers) that encapsulate a uniform CoNi nanoalloy to enhance its HER performance in acidic media. The optimized catalyst exhibits high stability and activity with an onset overpotential of almost zero versus the reversible hydrogen electrode (RHE) and an overpotential of only 142 mV at 10 mA cm(-2) , which is quite close to that of commercial 40 % Pt/C catalysts. Density functional theory (DFT) calculations indicate that the ultrathin graphene shells strongly promote electron penetration from the CoNi nanoalloy to the graphene surface. With nitrogen dopants, they synergistically increase the electron density on the graphene surface, which results in superior HER activity on the graphene shells.


Science | 2014

Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen

Xiaoguang Guo; Guangzong Fang; Gang Li; Hao Ma; Hongjun Fan; Liang Yu; Chao Ma; Xing Wu; Dehui Deng; Mingming Wei; Dali Tan; Rui Si; Shuo Zhang; Jianqi Li; Litao Sun; Zichao Tang; Xiulian Pan; Xinhe Bao

Upgrading Methane Sans Oxygen Direct routes to converting methane to higher hydrocarbons can allow natural gas to be used to provide chemical feedstocks. However, the reaction conditions needed to activate the strong C-H bond tend to overoxidize the products. Guo et al. (p. 616) report a high-temperature nonoxidative route that exposes methane to isolated iron sites on a silica catalyst. Methyl radicals were generated and coupled in the gas phase to form ethylene and aromatics along with hydrogen. The isolation of the active sites avoided surface reactions between the radicals that would deposit solid carbon. Methyl radicals that form at isolated iron sites in a silica matrix form gas-phase products and do not deposit solid carbon. The efficient use of natural gas will require catalysts that can activate the first C–H bond of methane while suppressing complete dehydrogenation and avoiding overoxidation. We report that single iron sites embedded in a silica matrix enable direct, nonoxidative conversion of methane, exclusively to ethylene and aromatics. The reaction is initiated by catalytic generation of methyl radicals, followed by a series of gas-phase reactions. The absence of adjacent iron sites prevents catalytic C-C coupling, further oligomerization, and hence, coke deposition. At 1363 kelvin, methane conversion reached a maximum at 48.1% and ethylene selectivity peaked at 48.4%, whereas the total hydrocarbon selectivity exceeded 99%, representing an atom-economical transformation process of methane. The lattice-confined single iron sites delivered stable performance, with no deactivation observed during a 60-hour test.


Accounts of Chemical Research | 2011

The Effects of Confinement inside Carbon Nanotubes on Catalysis

Xiulian Pan; Xinhe Bao

The unique tubular morphology of carbon nanotubes (CNTs) has triggered wide research interest. These structures can be used as nanoreactors and to create novel composites through the encapsulation of guest materials in their well-defined channels. The rigid nanotubes restrict the size of the encapsulated materials down to the nanometer and even the sub-nanometer scale. In addition, interactions may develop between the encapsulated molecules and nanomaterials and the CNT surfaces. The curvature of CNT walls causes the π electron density of the graphene layers to shift from the concave inner to the convex outer surface, which results in an electric potential difference. As a result, the molecules and nanomaterials on the exterior walls of CNTs likely display different properties and chemical reactivities from those confined within CNTs. Catalysis that utilizes the interior surface of CNTs was only explored recently. An increasing number of studies have demonstrated that confining metal or metal oxide nanoparticles inside CNTs often leads to a different catalytic activity with respect to the same metals deposited on the CNT exterior surface. Furthermore, this inside and outside activity difference varies based on the metals used and the reactions catalyzed. In this Account, we describe the efforts toward understanding the fundamental effects of confining metal nanoparticles inside the CNT channels. This research may provide a novel approach to modulate their catalytic performance and promote rational design of catalysts. To achieve this, we have developed strategies for homogeneous dispersion of nanoparticles inside nanotubes. Because researchers have previously demonstrated the insertion of nanoparticles within larger nanotubes, we focused specifically on multiwalled carbon nanotubes (MWCNTs) with an inner diameter (i.d.) smaller than 10 nm and double-walled carbon nanotubes (DWCNTs) with 1.0-1.5 nm i.d. The results show that CNTs with well-defined morphology and unique electronic structure of CNTs provide an intriguing confinement environment for catalysis.


Energy and Environmental Science | 2014

Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction

Jiao Deng; Pengju Ren; Dehui Deng; Liang Yu; Fan Yang; Xinhe Bao

Employing a low-cost and highly efficient electrocatalyst to replace Pt-based catalysts for hydrogen evolution reaction (HER) has attracted increasing interest in renewable energy research. Earth-abundant transition metals such as Fe, Co and Ni have been investigated as promising alternatives in alkaline electrolytes. However, these non-precious-metal catalysts are not stable in acids, excluding their application in the acidic solid polymer electrolyte (SPE). Herein, we report a strategy to encapsulate 3d transition metals Fe, Co and the FeCo alloy into nitrogen-doped carbon nanotubes (CNTs) and investigated their HER activity in acidic electrolytes. The optimized catalysts exhibited long-term durability and high activity with only an ∼70 mV onset overpotential vs. RHE which is quite close to that of the commercial 40% Pt/C catalyst, demonstrating the potential for the replacement of Pt-based catalysts. Density functional theory (DFT) calculations indicated that the introduction of metal and nitrogen dopants can synergistically optimize the electronic structure of the CNTs and the adsorption free energy of H atoms on CNTs, and therefore promote the HER with a Volmer–Heyrovsky mechanism.


Journal of the American Chemical Society | 2015

Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles

Dunfeng Gao; Hu Zhou; Jing Wang; Shu Miao; Fan Yang; Guoxiong Wang; Jian-guo Wang; Xinhe Bao

Size effect has been regularly utilized to tune the catalytic activity and selectivity of metal nanoparticles (NPs). Yet, there is a lack of understanding of the size effect in the electrocatalytic reduction of CO2, an important reaction that couples with intermittent renewable energy storage and carbon cycle utilization. We report here a prominent size-dependent activity/selectivity in the electrocatalytic reduction of CO2 over differently sized Pd NPs, ranging from 2.4 to 10.3 nm. The Faradaic efficiency for CO production varies from 5.8% at -0.89 V (vs reversible hydrogen electrode) over 10.3 nm NPs to 91.2% over 3.7 nm NPs, along with an 18.4-fold increase in current density. Based on the Gibbs free energy diagrams from density functional theory calculations, the adsorption of CO2 and the formation of key reaction intermediate COOH* are much easier on edge and corner sites than on terrace sites of Pd NPs. In contrast, the formation of H* for competitive hydrogen evolution reaction is similar on all three sites. A volcano-like curve of the turnover frequency for CO production within the size range suggests that CO2 adsorption, COOH* formation, and CO* removal during CO2 reduction can be tuned by varying the size of Pd NPs due to the changing ratio of corner, edge, and terrace sites.

Collaboration


Dive into the Xinhe Bao's collaboration.

Top Co-Authors

Avatar

Xiuwen Han

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Qiang Fu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiping Zhang

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiulian Pan

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Dali Tan

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Xianchun Liu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Yide Xu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Xiumei Liu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Guoxiong Wang

Dalian Institute of Chemical Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge