Xinhou Zhang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xinhou Zhang.
Plant and Soil | 2013
Rong Mao; Changchun Song; Xinhou Zhang; Xian-Wei Wang; Zheng-Hai Zhang
Background and AimsIncreased N availability induced by agricultural fertilization applications and atmospheric N deposition may affect plant nutrient resorption in temperate wetlands. However, the relationship between nutrient resorption and N availability is still unclear, and most studies have focused on leaf nutrient resorption only. The aim of our study was to examine the response of leaf and non-leaf organ nutrient resorption to N enrichment in a temperate freshwater wetland.MethodsWe conducted a 7-year N addition experiment to investigate the effects of increased N loading on leaf, sheath and stem nutrient (N and P) resorption of two dominant species (Deyeuxia angustifolia and Glyceria spiculosa) in a freshwater marsh in the Sanjiang Plain, Northeast China.ResultsOur results showed that, for both leaf and non-leaf organs (sheath and stem), N addition decreased N resorption proficiency and hence increased litter N concentration. Moreover, the magnitude of N addition effect on N resorption proficiency varied with fertilization rates for D. angustifolia sheaths and stems, and G. spiculosa leaves. However, increased N loading produced inconsistent impacts on N and P resorption efficiencies and P resorption proficiency, and the effects only varied with species and plant organs. In addition, N enrichment increased litter mass and altered litter allocation among leaf, sheath and stem.ConclusionsOur results highlight that leaf and non-leaf organs respond differentially to N addition regarding N and P resorption efficiencies and P resorption proficiency, and also suggest that N enrichment in temperate freshwater wetlands would alter plant internal nutrient cycles and increase litter quality and quantity, and thus substantially influence ecosystem carbon and nutrient cycles.
Scientific Reports | 2015
Rong Mao; De-Hui Zeng; Xinhou Zhang; Changchun Song
Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m−2 year−1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.
Science of The Total Environment | 2016
Rong Mao; Hui-Min Chen; Xinhou Zhang; Fuxi Shi; Changchun Song
Phosphorus (P) enrichment induced by anthropogenic activities results in modified plant nutrient status, which potentially alters the stoichiometry of carbon (C), nitrogen (N), and P in plants. However, how increased P availability changes plant C:N:P stoichiometry at different hierarchical scales is unclear in N-limited ecosystems. In this study, we conducted a four-level P addition experiment (0, 1.2, 4.8, and 9.6gPm(-)(2)year(-1)) to elucidate the effect of P enrichment on plant C:N:P stoichiometric ratios at both the species and community levels in a freshwater wetland in the Sanjiang Plain, Northeast China. We found that species- and community-level plant C:N:P stoichiometry responded consistently to six years of P addition, although there was a shift in species dominance. Phosphorus addition increased plant N and P concentrations and thus decreased C:N, C:P, and N:P ratios irrespective of the P addition levels. These similar change trends at different scales resulted from the identical responses of plant N and P concentrations in different species to P addition. Moreover, plant N concentration exhibited an increasing trend with increasing P addition levels, whereas plant C:N ratio showed a declining trend. At the community level, P addition at the rates of 1.2, 4.8, and 9.6gPm(-2)year(-1) decreased the C:N ratio by 24%, 27%, and 34%; decreased the C:P ratio by 33%, 35%, and 38%; and decreased the N:P ratio by 12%, 10%, and 6%, respectively. Our results indicate that the stoichiometric responses to P addition are scale-independent, and suggest that altered plant C:N:P stoichiometry induced by P enrichment would stimulate organic matter decomposition and accelerate nutrient cycles in N-limited temperate freshwater wetlands.
Journal of Freshwater Ecology | 2014
Xinhou Zhang; Rong Mao; Chao Gong; Guisheng Yang; Yongzheng Lu
Hydrology and competition are major determinants of plant zonation patterns in wetlands. We conducted a pot experiment to investigate effects of water levels on plant growth of two dominant species from the Sanjiang Plain (Deyeuxia angustifolia and Carex lasiocarpa) in monoculture and mixtures (i.e., 2:1, 1:1, and 1:2 mixtures of C. lasiocarpa and D. angustifolia). Water level had significant effects on the biomass of both species (p < 0.05). The aboveground biomass of C. lasiocarpa increased with decreasing water level in both monoculture and mixtures and the same was true for belowground biomass in monoculture. Waterlogging (10 cm water level) and natural drought reduced the aboveground and belowground biomass of D. angustifolia in monoculture and waterlogging (20 and 10 cm water levels) also reduced the aboveground biomass in mixtures. The relative yield of C. lasiocarpa was greater than 1.0 in the 1:1 mixture (t = 3.49) and the 1:2 mixture (t = 6.63) at 20 cm water level (i.e., the performance of individuals was better in mixtures than that in the monoculture), and the same was true for D. angustifolia in the 2:1 mixture (t = 10.23) and the 1:1 mixture (t = 4.12) at −10 cm water level. The relative yield of C. lasiocarpa increased with increasing water level in the 1:1 and 1:2 mixtures but decreased for D. angustifolia in the 2:1 mixture. Moreover, the species with smaller initial proportion usually had higher relative yield in mixtures. This would tend to promote the coexistence of these two species. Our results suggest that hydrologic regime change has the potential to produce marked influences on plant productivity and ecosystem carbon budget in the Sanjiang Plain. Moreover, competition is an additional important determinant of plant distribution and community structure in this area.
Chinese Geographical Science | 2014
Rong Mao; Xinhou Zhang; Changchun Song
To clarify the responses of plant functional traits to nitrogen (N) enrichment, we investigated the whole-plant traits (plant height and aboveground biomass), leaf morphological (specific leaf area (SLA) and leaf dry mass content (LDMC)) and chemical traits (leaf N concentration (LNC) and leaf phosphorus (P) concentration (LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates (0 g N/(m2·yr), 6 g N/(m2·yr), 12 g N/(m2·yr) and 24 g N/(m2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C:N ratio, but caused an increase in leaf N:P ratio, and did not affect leaf C:P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands.
Science of The Total Environment | 2017
Rong Mao; Siyue Li; Xinhou Zhang; Xianwei Wang; Changchun Song
Understanding how P enrichment alters the quantity and quality of dissolved organic carbon (DOC) is important, because of their role in regulating the C cycle. Here, we established a four-level P addition experiment (0, 1.2, 4.8, and 9.6gPm-2year-1) in a N-limited freshwater wetland in the Sanjiang Plain, Northeast China. The aim of this study was to examine the effects of eight years of P addition on DOC concentration, SUVA254 (Abs254/DOC concentration, indicating the aromaticity of DOC), C:C ratio (Abs400/DOC concentration, indicating the proportion of colored humic substances in DOC), and E4:E6 ratio (Abs465/Abs665, indicating the molecular size of humic substances) in surface water and soil pore water (0-15cm depth) during the growing season (June through September). Our results showed similar changing trends in concentration and optical properties of DOC following eight years of P addition in the both surface water and soil pore water across the sampling dates. Generally, P addition decreased DOC concentration, SUVA254, and C:C ratio, and increased E4:E6 ratio, irrespective of P addition levels. These altered optical properties of DOC indicated that P addition decreased the molecular weight and aromaticity of DOC, and thus increased the quality of DOC. These results suggest P enrichment substantially reduces the quantity of DOC in N-limited temperate freshwater wetlands, and imply that increased DOC quality following P addition can further provide a positive feedback to decreased DOC pool.
Science of The Total Environment | 2017
Rong Mao; Xinhou Zhang; Siyue Li; Changchun Song
Phosphorus (P) enrichment is expected to strongly influence dissolved organic carbon (DOC) biodegradation. However, the relationship between P availability and DOC biodegradation is largely unknown in nitrogen (N)-limited ecosystems. Here, we investigated the changes in the ratio of DOC to dissolved total nitrogen (DTN), specific UV absorbance at 254nm (SUVA254), and DOC biodegradation in surface water and soil pore water (0-15cm depth) following eight years of multi-level P addition (0, 1.2, 4.8, and 9.6gPm-2year-1) in an N-limited freshwater marsh in Northeast China. We found that P addition caused an increase in DOC biodegradation in surface water and soil pore water, irrespective of the P addition levels. Compared with the control treatment, the P addition rates of 1.2, 4.8, and 9.6gPm-2year-1 increased DOC biodegradation by 20.7%, 15.2%, and 14.5% in surface waters, and 11.3%, 9.4%, and 12.0% in soil pore waters, respectively. The DOC biodegradation was separately negatively correlated with the DOC:DTN ratio and SUVA254, indicating that the positive effect of P addition on DOC biodegradation was caused by the elevated N concentration and the reduced DOC aromaticity. Our findings suggest that P enrichment enhances the biodegradability of DOC through increased N availability and altered DOC chemical composition, which would accelerate DOC loss from the waters and alter ecosystem C balance in N-limited temperate wetlands.
Science of The Total Environment | 2018
Rong Mao; Xinhou Zhang; Changchun Song; Xianwei Wang; Patrick M. Finnegan
In boreal peatlands, litter decomposition plays an important role in modulating ecosystem carbon (C) cycling and nutrient turnover. However, how climate warming and plant functional group interact to affect litter decomposition is still unclear in these ecosystems. Here, we collected fresh litters of six plant functional groups (nitrogen (N)-fixing species, deciduous tree, deciduous shrub, evergreen shrub, graminoid, and Sphagnum moss) from a boreal peatland located in northeast China. A laboratory incubation experiment was used to determine the effect of temperature (10 °C vs. 20 °C) on microbial respiration and mass loss during decomposition. Among the six functional groups, the litters of N-fixing species and deciduous shrub, followed by deciduous tree, generally had the greatest mass losses and microbial respiration rates, whereas the Sphagnum moss decomposed with the slowest rate at both incubation temperatures. Increasing incubation temperature from 10 °C to 20 °C, microbial respiration rate and mass loss increased slightly for Sphagnum moss litters (25% and 19%, respectively), but increased dramatically for vascular plant litters (84-135% and 49-85%, respectively). For litters from vascular plants, both decomposition rate and temperature sensitivity showed a tight linear correlation with the initial C:N and C:phosphorus ratios. Considering that climate warming will cause increased dominance of woody plant species coupled with decreased cover by Sphagnum mosses, this study provides clear evidence that climate warming and the associated changes to vegetation community composition can synergistically accelerate plant litter decomposition in boreal peatlands.
Wetlands Ecology and Management | 2017
Chao Gong; Changchun Song; Xinhou Zhang; Wenwen Tan; Tianhua Qiao
Soil organic carbon (SOC) mineralization is an important process of carbon (C) cycling and budgeting associated with litter decomposition in terrestrial ecosystems. Research on altered plant-derived C input on soil C stability due to climate change is controversial and there remains considerable uncertainty in predicting soil C dynamics with the techniques currently available. In this study, we conducted a laboratory incubation experiment to test the effects of single- and mixed-Deyeuxia angustifolia (DA) and Carex lasiocarpa (CL) leaf litter addition on cumulative marshland soil CO2 emission under waterlogged and non-waterlogged conditions in Sanjiang Plain, Northeast China. Results showed that the cumulative CO2 emissions were significantly increased after leaf litter addition in both water conditions, and that the effect was more pronounced for DA amendment than CL regardless of water condition. The cumulative CO2 efflux differed considerably between water conditions after DA addition, whereas no significant differences were found after CL addition. Remarkably impact of leaf litter types on cumulative CO2 evolution was observed overall, water condition and interactions between leaf litter types and water conditions had no significant effect on CO2 emissions, however. There were no non-additive effects of individual leaf litter type on total CO2 efflux of the mixed-leaf litter addition treatments. The results of this study indicate that plant litter input to the C-rich marshy soil can induce rapid changes in SOC decomposition regardless of water conditions and that plant residue effects should be taken into consideration when assessing the dynamics of wetland soil system to the future climate scenarios.
Plant and Soil | 2014
Xinhou Zhang; Changchun Song; Rong Mao; Guisheng Yang; Baoxian Tao; Fuxi Shi; Xiaoyan Zhu; Aixin Hou