Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinhua Ji is active.

Publication


Featured researches published by Xinhua Ji.


Molecular Cell | 2009

Allosteric Activation of E2-RING Finger-Mediated Ubiquitylation by a Structurally Defined Specific E2-Binding Region of gp78

Ranabir Das; Jennifer Mariano; Yien Che Tsai; Ravi C. Kalathur; Zlatka Kostova; Jess Li; Sergey G. Tarasov; Robert L. McFeeters; Amanda S. Altieri; Xinhua Ji; R. Andrew Byrd; Allan M. Weissman

The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.


Journal of Molecular Biology | 2002

Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis.

Yijun Gu; Ludmila Reshetnikova; Yue Li; Yan Wu; Honggao Yan; Xinhua Ji

Shikimate kinase (SK) and other enzymes in the shikimate pathway are potential targets for developing non-toxic antimicrobial agents, herbicides, and anti-parasite drugs, because the pathway is essential in the above species but is absent from mammals. The crystal structure of Mycobacterium tuberculosis SK (MtSK) in complex with MgADP has been determined at 1.8 A resolution, revealing critical information for the structure-based design of novel anti-M. tuberculosis agents. MtSK, with a five-stranded parallel beta-sheet flanked by eight alpha-helices, has three domains: the CORE domain, the shikimate-binding domain (SB), and the LID domain. The ADP molecule is bound with its adenine moiety sandwiched between the side-chains of Arg110 and Pro155, its beta-phosphate group in the P-loop, and the alpha and beta-phosphate groups hydrogen bonded to the guanidinium group of Arg117. Arg117 is located in the LID domain, is strictly conserved in SK sequences, is observed for the first time to interact with any bound nucleotide, and appears to be important in both substrate binding and catalysis. The crystal structure of MtSK (this work) and that of Erwinia chrysanthemi SK suggest a concerted conformational change of the LID and SB domains upon nucleotide binding.


Molecular Microbiology | 2007

A stepwise model for double-stranded RNA processing by ribonuclease III.

Jianhua Gan; Gary Shaw; Joseph E. Tropea; David S. Waugh; Donald L. Court; Xinhua Ji

RNA interference is mediated by small interfering RNAs produced by members of the ribonuclease III (RNase III) family represented by bacterial RNase III and eukaryotic Rnt1p, Drosha and Dicer. For mechanistic studies, bacterial RNase III has been a valuable model system for the family. Previously, we have shown that RNase III uses two catalytic sites to create the 2‐nucleotide (nt) 3′ overhangs in its products. Here, we present three crystal structures of RNase III in complex with double‐stranded RNA, demonstrating how Mg2+ is essential for the formation of a catalytically competent protein–RNA complex, how the use of two Mg2+ ions can drive the hydrolysis of each phosphodiester bond, and how conformational changes in both the substrate and the protein are critical elements for assembling the catalytic complex. Moreover, we have modelled a protein–substrate complex and a protein–reaction intermediate (transition state) complex on the basis of the crystal structures. Together, the crystal structures and the models suggest a stepwise mechanism for RNase III to execute the phosphoryl transfer reaction.


Journal of Biological Chemistry | 2006

Structure of Severe Acute Respiratory Syndrome Coronavirus Receptor-binding Domain Complexed with Neutralizing Antibody

Ponraj Prabakaran; Jianhua Gan; Yang Feng; Zhongyu Zhu; Vidita Choudhry; Xiaodong Xiao; Xinhua Ji; Dimiter S. Dimitrov

The severe acute respiratory syndrome coronavirus (SARS-CoV, or SCV), which caused a world-wide epidemic in 2002 and 2003, binds to a receptor, angiotensin-converting enzyme 2 (ACE2), through the receptor-binding domain (RBD) of its envelope (spike, S) glycoprotein. The RBD is very immunogenic; it is a major SCV neutralization determinant and can elicit potent neutralizing antibodies capable of out-competing ACE2. However, the structural basis of RBD immunogenicity, RBD-mediated neutralization, and the role of RBD in entry steps following its binding to ACE2 have not been elucidated. By mimicking immune responses with the use of RBD as an antigen to screen a large human antibody library derived from healthy volunteers, we identified a novel potent cross-reactive SCV-neutralizing monoclonal antibody, m396, which competes with ACE2 for binding to RBD, and determined the crystal structure of the RBD-antibody complex at 2.3-Å resolution. The antibody-bound RBD structure is completely defined, revealing two previously unresolved segments (residues 376–381 and 503–512) and a new disulfide bond (between residues 378 and 511). Interestingly, the overall structure of the m396-bound RBD is not significantly different from that of the ACE2-bound RBD. The antibody epitope is dominated by a 10-residue-long protruding β6–β7 loop with two putative ACE2-binding hotspot residues (Ile-489 and Tyr-491). These results provide a structural rationale for the function of a major determinant of SCV immunogenicity and neutralization, the development of SCV therapeutics based on the antibody paratope and epitope, and a retrovaccinology approach for the design of anti-SCV vaccines. The available structural information indicates that the SCV entry may not be mediated by ACE2-induced conformational changes in the RBD but may involve other conformational changes or/and yet to be identified coreceptors.


Structure | 2000

Catalytic Center Assembly of Hppk as Revealed by the Crystal Structure of a Ternary Complex at 1.25 A Resolution

Jaroslaw Blaszczyk; Genbin Shi; Honggao Yan; Xinhua Ji

BACKGROUND Folates are essential for life. Unlike mammals, most microorganisms must synthesize folates de novo. 6-Hydroxymethyl-7, 8-dihydropterin pyrophosphokinase (HPPK) catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate pathway, and therefore is an ideal target for developing novel antimicrobial agents. HPPK from Escherichia coli is a 158-residue thermostable protein that provides a convenient model system for mechanistic studies. Crystal structures have been reported for HPPK without bound ligand, containing an HP analog, and complexed with an HP analog, two Mg(2+) ions, and ATP. RESULTS We present the 1.25 A crystal structure of HPPK in complex with HP, two Mg(2+) ions, and AMPCPP (an ATP analog that inhibits the enzymatic reaction). This structure demonstrates that the enzyme seals the active center where the reaction occurs. The comparison with unligated HPPK reveals dramatic conformational changes of three flexible loops and many sidechains. The coordination of Mg(2+) ions has been defined and the roles of 26 residues have been derived. CONCLUSIONS HPPK-HP-MgAMPCPP mimics most closely the natural ternary complex of HPPK and provides details of protein-substrate interactions. The coordination of the two Mg(2+) ions helps create the correct geometry for the one-step reaction of pyrophosphoryl transfer, for which we suggest an in-line single displacement mechanism with some associative character in the transition state. The rigidity of the adenine-binding pocket and hydrogen bonds are responsible for adenosine specificity. The nonconserved residues that interact with the substrate might be responsible for the species-dependent properties of an isozyme.


Structure | 1999

Crystal structure of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase, a potential target for the development of novel antimicrobial agents

Bing Xiao; Genbin Shi; Xin Chen; Honggao Yan; Xinhua Ji

BACKGROUND Folate cofactors are essential for life. Mammals derive folates from their diet, whereas most microorganisms must synthesize folates de novo. Enzymes of the folate pathway therefore provide ideal targets for the development of antimicrobial agents. 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. RESULTS The crystal structure of HPPK from Escherichia coli has been determined at 1.5 A resolution with a crystallographic R factor of 0.182. The HPPK molecule has a novel three-layered alpha beta alpha fold that creates a valley approximately 26 A long, 10 A wide and 10 A deep. The active center of HPPK is located in the valley and the substrate-binding sites have been identified with the aid of NMR spectroscopy. The HP-binding site is located at one end of the valley, near Asn55, and is sandwiched between two aromatic sidechains. The ATP-binding site is located at the other end of the valley. The adenine base of ATP is positioned near Leu111 and the ribose and the triphosphate extend across and reach the vicinity of HP. CONCLUSIONS The HPPK structure provides a framework to elucidate structure/function relationships of the enzyme and to analyze mechanisms of pyrophosphoryl transfer. Furthermore, this work may prove useful in the structure-based design of new antimicrobial agents.


Nature | 2017

Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.

Jason R. Stagno; Yongmei Liu; Y. R. Bhandari; Chelsie E. Conrad; S. Panja; M. Swain; L. Fan; Garrett Nelson; Chufeng Li; D. R. Wendel; Thomas A. White; Jesse Coe; Max O. Wiedorn; Juraj Knoška; Dominik Oberthuer; R. A. Tuckey; P. Yu; M. Dyba; Sergey G. Tarasov; Uwe Weierstall; Thomas D. Grant; Charles D. Schwieters; Junmei Zhang; Adrian R. Ferré-D'Amaré; Petra Fromme; D. E. Draper; Mengning Liang; Mark S. Hunter; Sébastien Boutet; K. Tan

Riboswitches are structural RNA elements that are generally located in the 5′ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.


Journal of Biological Chemistry | 2014

Growth Arrest by the Antitumor Steroidal Lactone Withaferin A in Human Breast Cancer Cells Is Associated with Down-regulation and Covalent Binding at Cysteine 303 of β-Tubulin

Marie Lue Antony; Joomin Lee; Eun Ryeong Hahm; Su Hyeong Kim; Adam I. Marcus; Vandana Kumari; Xinhua Ji; Zhen Yang; Courtney L. Vowell; Peter Wipf; Guy Uechi; Nathan A. Yates; Guillermo Romero; Saumendra N. Sarkar

Background: The tubulin microtubule network remains an attractive anticancer target. Results: The antitumor steroidal lactone withaferin A (WA) down-regulates tubulin and binds to Cys303 of β-tubulin. Conclusion: Tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. Significance: Favorable safety and pharmacokinetic profiles merit clinical investigation of WA for prevention and/or treatment of breast cancer. Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of β-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys303 of β-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of β-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis

Chao Tu; Xiaomei Zhou; Joseph E. Tropea; Brian P. Austin; David S. Waugh; Donald L. Court; Xinhua Ji

ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the 1531AUCACCUCCUUA1542 sequence at the 3′ end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a “twist” for noneukaryotic ERA proteins by also recognizing the CCUCC.


The EMBO Journal | 2013

Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine

Ranabir Das; Yu-He Liang; Jennifer Mariano; Jess Li; Tao Huang; Aaren King; Sergey G. Tarasov; Allan M. Weissman; Xinhua Ji; R. Andrew Byrd

RING finger proteins constitute the large majority of ubiquitin ligases (E3s) and function by interacting with ubiquitin‐conjugating enzymes (E2s) charged with ubiquitin. How low‐affinity RING–E2 interactions result in highly processive substrate ubiquitination is largely unknown. The RING E3, gp78, represents an excellent model to study this process. gp78 includes a high‐affinity secondary binding region for its cognate E2, Ube2g2, the G2BR. The G2BR allosterically enhances RING:Ube2g2 binding and ubiquitination. Structural analysis of the RING:Ube2g2:G2BR complex reveals that a G2BR‐induced conformational effect at the RING:Ube2g2 interface is necessary for enhanced binding of RING to Ube2g2 or Ube2g2 conjugated to Ub. This conformational effect and a key ternary interaction with conjugated ubiquitin are required for ubiquitin transfer. Moreover, RING:Ube2g2 binding induces a second allosteric effect, disrupting Ube2g2:G2BR contacts, decreasing affinity and facilitating E2 exchange. Thus, gp78 is a ubiquitination machine where multiple E2‐binding sites coordinately facilitate processive ubiquitination.

Collaboration


Dive into the Xinhua Ji's collaboration.

Top Co-Authors

Avatar

Honggao Yan

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jaroslaw Blaszczyk

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yue Li

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

David S. Waugh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Saavedra

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Larry K. Keefer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Genbin Shi

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Yijun Gu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Donald L. Court

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge