Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinjian Peng is active.

Publication


Featured researches published by Xinjian Peng.


Pharmaceutical Research | 2010

Cancer chemoprevention by natural products: how far have we come?

Rajendra G. Mehta; Genoveva Murillo; Rajesh Naithani; Xinjian Peng

ABSTRACTSince ancient times, natural products, herbs and spices have been used for preventing several diseases, including cancer. The term chemoprevention was coined in the late 1970s and referred to the prevention of cancer by selective use of phytochemicals or their analogs. The field utilizes experimental carcinogenesis models to examine the efficacy of chemopreventive agents in a stage-specific manner. The concept of using naturally derived chemicals as potential chemopreventive agents has advanced the field dramatically. Throughout the years, a vast number of chemopreventive agents present in natural products have been evaluated using various experimental models. A number of them have progressed to early clinical trials. More recently, the focus has been directed towards molecular targeting of chemopreventive agents to identify mechanism(s) of action of these newly discovered bioactive compounds. Moreover, it has been recognized that single agents may not always be sufficient to provide chemopreventive efficacy, and, therefore, the new concept of combination chemoprevention by multiple agents or by the consumption of “whole foods” has become an increasingly attractive area of study. Novel technologies, such as nanotechnology, along with a better understanding of cancer stem cells, are certain to continue the advancement of the field of cancer chemoprevention in years to come.


Journal of Cellular Biochemistry | 2010

Protection against cellular stress by 25-hydroxyvitamin D3 in breast epithelial cells.

Xinjian Peng; Avani Vaishnav; Genoveva Murillo; Fatouma Alimirah; Karen E. O. Torres; Rajendra G. Mehta

25‐Hydroxyvitamin D3 (25(OH)D3) is a prohormone and a major vitamin D metabolite. The discovery of (25(OH)D3) 1α‐hydroxylase in many vitamin D target organs has yielded an increased interest in defining the role(s) of 25(OH)D3 in these tissues. The etiology of cancer appears to be complex and multi‐factorial. Cellular stress (e.g., DNA damage, hypoxia, oncogene activation) has been identified as one of the key factors responsible for initiating the carcinogenesis process. In this study, we investigated whether 25(OH)D3 protects breast epithelial cells from cellular stress using an established breast epithelial cell line MCF12F. To better elucidate the role of 25(OH)D3 in the stress response, we used multiple in vitro stress models including serum starvation, hypoxia, oxidative stress, and apoptosis induction. Under all these stress conditions, 25(OH)D3 (250 nmol/L) treatment significantly protected cells against cell death. Low‐serum stress induced p53 expression accompanied with downregulation of PCNA, the presence of 25(OH)D3 consistently inhibited the alteration of p53 and PCNA, suggesting that these molecules were involved in the stress process and may be potential target genes of 25(OH)D3. miRNA microarray analysis demonstrated that stress induced by serum starvation caused significant alteration in the expression of multiple miRNAs including miR182, but the presence of 25(OH)D3 effectively reversed this alteration. These data suggest that there is a significant protective role for 25(OH)D3 against cellular stress in the breast epithelial cells and these effects may be mediated by altered miRNA expression. J. Cell. Biochem. 110: 1324–1333, 2010.


Cancer Research | 2006

Prohibitin Is a Novel Target Gene of Vitamin D Involved in Its Antiproliferative Action in Breast Cancer Cells

Xinjian Peng; Rajeshwari R. Mehta; Sheng Wang; Srikumar Chellappan; Rajendra G. Mehta

Previously, we showed that N-methyl-N-nitrosourea-transformed MCF12F breast epithelial cells exhibited differential expression of several genes, including up-regulation of prohibitin and elevated sensitivity to a relatively noncalcemic vitamin D analogue, 1alpha-hydroxyvitamin D5 [1alpha(OH)D5]. In this report, we evaluated the functional significance of prohibitin in relation to the cellular response to vitamin D. The in silico screening for putative transcription factor binding sites identified two vitamin D receptor (VDR)/retinoid X receptor binding sites in the 1-kb promoter region of prohibitin. Prohibitin up-regulation by 1alpha(OH)D5 treatment at both transcriptional and translational levels was confirmed by real-time reverse transcription-PCR and Western blot analysis in breast cancer cells, identifying prohibitin as a vitamin D target gene. Confocal microscopic analysis showed that prohibitin was localized in the nuclei of MCF-7 cells and a portion of prohibitin was colocalized with VDR, but direct physical interaction between VDR and prohibitin in cell lysates was not detectable. In MCF-7 cells expressing tetracycline-inducible prohibitin (Tet-On model), the overexpression of prohibitin inhibited cell proliferation and enhanced vitamin D-induced antiproliferative activity. Knockdown of prohibitin was accompanied by increased number of cells incorporating bromodeoxyuridine in the whole population and increased cell distribution in the S phase of cell cycle. In addition, prohibitin level had no significant effect on the vitamin D-induced transactivation of CYP24, a VDR target gene. This is the first report to suggest that prohibitin serves as a novel vitamin D target gene, which is involved in the antiproliferative action of vitamin D without affecting CYP24 transactivation in breast cancer cells.


Cancer Prevention Research | 2009

Deguelin Inhibits Growth of Breast Cancer Cells by Modulating the Expression of Key Members of the Wnt Signaling Pathway

Genoveva Murillo; Xinjian Peng; Karen E. O. Torres; Rajendra G. Mehta

An emphasis in early detection and more effective treatments has decreased the mortality rate of breast cancer. Despite this decrease, breast cancer continues to be the leading cause of death among women between 40 and 55 years of age and is the second overall cause of death among women. Hence, the aim of the present study was to assess the therapeutic efficacy of deguelin, a rotenoid isolated from several plant species, which has been reported to have chemopreventive and/or chemotherapeutic effects in skin, mammary, colon, and lung cancers. The effect of deguelin on cell proliferation was evaluated using four human breast carcinoma cell lines (MCF-7, BT474, T47D, and MDA-MB-231) by cell count and MTT. Moreover, apoptosis was evaluated by acridine/ethidium staining and DNA laddering. Gene expression changes following deguelin treatment in MDA-MB-231 cells was assessed through microarray analysis. Deguelin at 1 μmol/L was found to inhibit the growth of the breast cancer cell lines tested with a range of 37% to 87%. The highest inhibition was noted for the MDA-MB-231 cell line (MDA-MB-231>BT474>MCF7>T47D>MCF12F). An arrest at the S phase of the cell cycle and apoptosis were shown in the MDA-MB-231 cells treated with deguelin. The microarray profile indicated differential expression of two independent pathways, including clusters of apoptosis and Wnt/β-catenin signaling genes in cells as a result of deguelin treatment. These studies support the antiproliferative effects of deguelin in human breast cancer cells and, perhaps more importantly, illustrate novel actions by deguelin in the Wnt signaling pathway.


PLOS ONE | 2013

Inhibition of Proliferation and Induction of Autophagy by Atorvastatin in PC3 Prostate Cancer Cells Correlate with Downregulation of Bcl2 and Upregulation of miR- 182 and p21

Xinjian Peng; Wenping Li; Liang Yuan; Rajendra G. Mehta; Levy Kopelovich; David L. McCormick

The epidemiologic association between statin use and decreased risk of advanced prostate cancer suggests that statins may inhibit prostate cancer development and/or progression. Studies were performed to determine the effects of a model statin, atorvastatin (ATO), on the proliferation and differentiation of prostate cancer cells, and to identify possible mechanisms of ATO action. ATO inhibited the in vitro proliferation of both LNCaP and PC3 human prostate cancer cells in a dose- and time-dependent fashion. The greater inhibitory activity of ATO in PC3 cells was associated with induction of autophagy in that cell line, as demonstrated by increased expression of LC3-II. miR-182 was consistently upregulated by ATO in PC3 cells, but not in LNCaP cells. ATO upregulation of miR-182 in PC3 cells was p53-independent and was reversed by geranylgeraniol. Transfection of miR-182 inhibitors decreased expression of miR-182 by >98% and attenuated the antiproliferative activity of ATO. miR-182 expression in PC3 cells was also increased in response to stress induced by serum withdrawal, suggesting that miR-182 upregulation can occur due to nutritional stress. Bcl2 and p21 were identified to be potential target genes of miR-182 in PC3 cells. Bcl2 was downregulated and p21 was upregulated in PC3 cells exposed to ATO. These data suggest that miR-182 may be a stress-responsive miRNA that mediates ATO action in prostate cancer cells.


PLOS ONE | 2013

Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells.

Rajeshwari R. Mehta; Harshadadevi Katta; Fatouma Alimirah; Rutulkumar Patel; Genoveva Murillo; Xinjian Peng; Miguel Muzzio; Rajendra G. Mehta

Background Treatment of breast cancer patients with antiestrogens and aromatase inhibitor(s) or Herceptin have shown significant success in steroid receptor positive or Her-2+ breast cancers respectively. However, choice of treatments for breast cancer patients with negative status for estrogen, progesterone receptors and HER2/neu is limited. As a result, search for appropriate therapy regimen for these triple negative breast cancers (TNBC) has become a major focus of investigations for many laboratories. Recently, Deguelin, a natural product isolated from African plant Mundulea sericea (Leguminossae) has shown both antiproliferative actions in various cancers including breast as well as chemoprenventive activity against carcinogen induced experimental cancers. In this report we evaluated efficacy and mechanism of action of Deguelin in triple negative breast cancer cell lines. Methods/Findings In vitro, Deguelin in a dose and time dependent manner inhibited the growth of MDA-MB-231, MDA-MB-468, BT-549 and BT-20 cells. Deguelin (2 or 4 mg/kg body weight), when injected intraperitoneally, reduced the in vivo tumor growth of MDA-MB-231 cells transplanted subcutaneously in athymic mice. Moreover it was nontoxic as evident from daily observations on mobility, food and water consumption and comparison of bodyweight and other visceral organ weights with those in control animals at the termination of the study. The western blot analyses and immunostaining studies indicated that the deguelin effects may be mediated through EGFR-PAKT/c-Met p-ERK and NF-κB by down regulating their downstream targets such as p-STAT3, c-Myc, Survivin. Conclusion/Significance These results suggest that Deguelin may have a significant therapeutic value for the treatment of TNBC patients.


Cancer Letters | 2013

Vitamin D and breast cancer: Emerging concepts

Rajendra G. Mehta; Xinjian Peng; Fatouma Alimirah; Genoveva Murillo; Rajeshwari R. Mehta

The benefit of vitamin D in cancer prevention and to certain extent therapy has been well recognized. The active form of vitamin D, 1,25-dihydroxycholecalciferol (1,25(OH)2 D3) is a natural ligand for vitamin D receptor (VDR). Since 1,25(OH)2D3 exerts toxic effects at a concentration that is beneficial, nearly 1500 analogs of vitamin D have been synthesized and evaluated for their efficacy in a variety of carcinogenesis and human cancer models both in vitro and in vivo. Among these only a handful of them have been approved for evaluation in clinical trials for leukemia, breast, prostate and colon cancers. The mechanism of vitamin D action is mediated by the nuclear VDR and the signaling cascade for its action is extensively reported. In this review we focus on the newer concepts for vitamin D action. These include (1) differential effects of vitamin D in maintaining cell proliferation when the cells are under stress but suppressing cell growth when the cells are transformed; (2) functional significance of VDR polymorphism in potential vitamin D responsiveness; (3) regulation of constitutive splicing of vitamin D target gene, CYP24a, by the hormone and its significance; and (4) regulation of microRNA by vitamin D in breast cancer. It is anticipated that the new work in these selective areas would expand the understanding of vitamin D in breast cancer prevention and therapy.


Experimental Cell Research | 2012

Crosstalk between the peroxisome proliferator-activated receptor γ (PPARγ) and the vitamin D receptor (VDR) in human breast cancer cells: PPARγ binds to VDR and inhibits 1α,25-dihydroxyvitamin D3 mediated transactivation

Fatouma Alimirah; Xinjian Peng; Liang Yuan; Rajeshwari R. Mehta; Andreas von Knethen; Divaker Choubey; Rajendra G. Mehta

Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ERα) physically binds to peroxisome proliferator-activated receptor gamma (PPARγ) and inhibits its transcriptional activity. The interaction between PPARγ and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPARγ and VDR signaling, and for the first time we show that PPARγ physically associates with VDR in human breast cancer cells. We found that overexpression of PPARγ decreased 1α,25-dihydroxyvitamin D(3) (1,25D(3)) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPARγs hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPARγs AF2 domain attenuated its repressive action on 1,25D(3) transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPARγ was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXRα). Overexpression of RXRα blocked PPARγs suppressive effect on 1,25D(3) action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPARγ and VDR pathways.


Molecular and Cellular Biochemistry | 2010

Functionality of unliganded VDR in breast cancer cells: repressive action on CYP24 basal transcription

Fatouma Alimirah; Avani Vaishnav; Michael McCormick; Ibtissam Echchgadda; Bandana Chatterjee; Rajendra G. Mehta; Xinjian Peng

It is well-established that CYP24, an immediate target gene of VDR is upregulated by VDR ligands. This study is focused on the functional role of unliganded VDR by investigating the correlation between the expression of VDR protein and basal mRNA levels of CYP24 in breast cancer cell lines. Analyses of multiple breast cancer cell lines demonstrated an inverse correlation between VDR protein expression and CYP24 mRNA expression levels; while in the presence of ligand, VDR protein level was positively correlated with CYP24 expression. In MCF-7 cells, VDR was mainly distributed in the nuclei in the absence of ligand. VDR overexpression in MCF-7 cells and MDA-MB231 cells decreased CYP24 mRNA expression levels and CYP24 promoter activity. Conversely, knock-down of VDR using siRNA techniques in MCF-7 and T47D cells significantly increased CYP24 mRNA expression. We also found that overexpression of VDR with a polymorphic site (FokI-FF) at its AF-1 domain, which makes VDR shorter by three amino acids, failed to repress CYP24 promoter activity. This report provides conclusive evidence for the repressive action of unliganded VDR on the expression of its target gene CYP24 and the importance of an intact VDR AF-1 domain for its repressive action.


Experimental Cell Research | 2016

Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells

Fatouma Alimirah; Xinjian Peng; Akash Gupta; Liang Yuan; JoEllen Welsh; Michele A. Cleary; Rajendra G. Mehta

The vitamin D receptor (VDR), and its ligand 1α,25-dihydroxyvitamin D3 (1,25D3) prevent breast cancer development and progression, yet the molecular mechanisms governing this are unclear. MicroRNAs (miRNAs) on the other hand, promote or inhibit breast cancer growth. To understand how VDR regulates miRNAs, we compared miRNA expression of wild-type (WT) and VDR knockout (VDRKO) breast cancer cells by a Mouse Breast Cancer miRNA PCR array. Compared to VDR WT cells, expressions of miR-214, miR-199a-3p and miR-199a-5p of the miR-199a/miR-214 cluster were 42, 15, and 10 fold higher in VDRKO cells respectively. Overexpression of VDR in breast cancer cells reduced the miR-199a/miR-214 cluster expression by 30%. VDR status also negatively correlated with Dnm3os expression, a non-coding RNA transcript of the dynamin-3 gene encoding the miR-199a/miR-214 cluster, suggesting that VDR represses this cluster through Dnm3os. Conversely, overexpression of miR-214 in MCF-7 and T47D cells antagonized VDR mediated signaling. Furthermore, there was a positive correlation between VDR status and the expression of Suppressor of fused gene (SuFu), a hedgehog pathway inhibitor. miR-214 on the other hand suppressed SuFu protein expression. These findings suggest a crosstalk between VDR and miR-214 in regulating hedgehog signaling in breast cancer cells, providing new therapies for breast cancer.

Collaboration


Dive into the Xinjian Peng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajeshwari R. Mehta

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Genoveva Murillo

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Yuan

IIT Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akash Gupta

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge