Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinjie Bao is active.

Publication


Featured researches published by Xinjie Bao.


Brain Research | 2011

Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats

Xinjie Bao; Junji Wei; Ming Feng; Shan Lu; Guilin Li; Wanchen Dou; Wenbin Ma; Sihai Ma; Yihua An; Chuan Qin; Robert Chunhua Zhao; Renzhi Wang

Mesenchymal stem cells (MSCs) have been successfully used for the treatment of experimental stroke. However, the neurorestorative mechanisms by which MSCs improve neurological functional recovery are not fully understood. Endogenous cell proliferation in the subventricular zone (SVZ) after stroke is well known, but most of newly formed cells underwent apoptosis. In the present study, we tested the hypothesis that neurotrophic factors secreted by human bone marrow-derived MSCs (hBMSCs) promote endogenous neurogenesis, reduce apoptosis, and improve functional recovery. Adult rats subjected to 2-h middle cerebral artery occlusion (MCAO) were transplanted with hBMSCs or saline into the ipsilateral brain parenchyma at 3days after ischemia. There was a significant recovery of behavior in the hBMSCs-treated rats beginning at 14days after MCAO compared with the control animals. Higher levels of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF) were detected in the hBMSCs-treated rat brain than the control. Human BMSCs treatment also enhanced endogenous cell proliferation both in the SVZ and in the subgranular zone (SGZ) of the hippocampus. In addition, more neuronal progenitor cells migrated from the SVZ to the ischemic boundary zone (IBZ) and differentiated into mature neurons with less apoptosis in rats treated with hBMSCs. Overall, these data suggest an essential role for hBMSCs in promoting endogenous neurogenesis, protecting newly formed cells, and improving functional recovery after ischemia in rats.


Biomaterials | 2013

Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats

Jian Guan; Zhaohui Zhu; Robert Chunhua Zhao; Zhifeng Xiao; Chenxi Wu; Qin Han; Lei Chen; Weimin Tong; Jin Zhang; Qianqian Han; Jun Gao; Ming Feng; Xinjie Bao; Jianwu Dai; Renzhi Wang

Studies have suggested that mesenchymal stem cells (MSCs) have therapeutic effects following traumatic brain injury (TBI). However, cell distribution and survival rate are two major barriers to their success as therapeutic treatment. The improvement of cell therapy using collagen delivery matrices had been reported. However, we know very little about the mechanisms. We labeled human bone marrow-derived mesenchymal stem cells (hMSCs) with a positron emission tomography (PET) tracer, 18F-fluoro-2-deoxy-D-glucose (FDG). hMSCs were transplanted with or without collagen scaffolds into rats with experimental TBI and the whole-body nuclear images were compared. Collagen scaffolds increased the retention of hBMSC in the lesion site and limited its distribution at the transplanted region. Significantly more hMSCs were detected in the brain when transplanted with collagen scaffolds. The results showed collagen scaffolds also efficiently improved cell survival and neurite outgrowth in vivo, resulting in better neural functional recovery. In addition, brain metabolism also improved in the collagen scaffold implanted group, as evaluated by PET. We speculated that collagen scaffolds would improve early engraftment and support the survival of grafted cells post-transplantation.


European Journal of Neuroscience | 2011

Transplantation of Flk‐1+ human bone marrow‐derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats

Xinjie Bao; Ming Feng; Junji Wei; Qin Han; Hao Zhao; Guilin Li; Zhaohui Zhu; Haiqun Xing; Yihua An; Chuan Qin; Robert Chunhua Zhao; Renzhi Wang

Transplantation of bone marrow‐derived mesenchymal stem cells (BMSCs) is a potential therapy for cerebral ischemia. Although BMSCs‐induced angiogenesis is considered important for neurological functional recovery, the neurorestorative mechanisms are not fully understood. We examined whether BMSCs‐induced angiogenesis enhances cerebral tissue perfusion and creates a suitable microenvironment within the ischemic brain, which in turn accelerates endogenous neurogenesis and leads to improved functional recovery. Adult female rats subjected to 2 h middle cerebral artery occlusion (MCAO) were transplanted with a subpopulation of human BMSCs from male donors (Flk‐1+ hBMSCs) or saline into the ipsilateral brain parenchymal at 3 days after MCAO. Flk‐1+ hBMSCs‐treated rats exhibited significant behavioral recovery, beginning at 2 weeks after cerebral ischemia compared with controls. Moreover, rats treated with Flk‐1+ hBMSCs showed increased glucose metabolic activity and reduced infarct volume. Flk‐1+ hBMSCs treatment significantly increased the expression of vascular endothelial growth factor and brain‐derived neurotrophic factor, promoted angiogenesis, and facilitated cerebral blood flow in the ischemic boundary zone. Further, Flk‐1+ hBMSCs treatment enhanced proliferation of neural stem/progenitor cells (NSPCs) in the subventricular zone and subgranular zone of the hippocampus. Finally, more NSPCs migrated toward the ischemic lesion and differentiated to mature neurons or glial cells with less apoptosis in Flk‐1+ hBMSCs‐treated rats. These data indicate that angiogenesis induced by Flk‐1+ hBMSCs promotes endogenous neurogenesis, which may cause functional recovery after cerebral ischemia.


Human Gene Therapy | 2011

Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats.

Hao Zhao; Xinjie Bao; Renzhi Wang; Guilin Li; Jun Gao; Sihai Ma; Junji Wei; Ming Feng; Yingjie Zhao; Wenbin Ma; Yi Yang; Yongning Li; Yanguo Kong

Our objective was to achieve the enhanced delivery of vascular endothelial growth factor (VEGF) to ischemically disordered brain through transferrin-coupled liposomes (Tf-PLs) via intravenous administration, and to observe the effect of Tf-VEGF-PLs on ischemic brain neuroprotection and angiogenesis. Cerebral VEGF overexpression was achieved with Tf-PLs by intravenous injection 48 hr after an acute stroke. β-Galactosidase expression was monitored; saline was injected as a control. The success of postischemic gene transduction was confirmed by β-galactosidase staining and by increased VEGF mRNA and protein in ischemic brain. Vascular density, neurological recovery, and ischemic area calculation were performed to evaluate the effect of Tf-VEGF-PLs. The positive expression of β-galactosidase indirectly indicated that VEGF was successfully delivered into brain by Tf-VEGF-PLs. VEGF mRNA in the Tf-VEGF-PL group 24 hr after injection was significantly higher than in the control group (p < 0.05). Western blot analysis showed that postischemic Tf-VEGF-PLs resulted in increased VEGF protein levels compared with VEGF-PLs and saline-administered rats (p < 0.05) 48 hr after administration. At 21 days after drug injection, we observed a significant decrease in infarct volume and better neurological function in the Tf-VEGF-PL-treated group, compared with the VEGF-PL group. FITC-dextran marking showed increased vascular density in the penumbra of Tf-VEGF-PL-treated hemispheres (245,873.9, number of microvessels per field) compared with that in VEGF-PL-treated hemispheres (139,801.3) or saline-treated hemispheres (102,175.5) (p < 0.05). The remainder of the cerebral blood flow after ischemia in the Tf-VEGF-PL group was significantly more than in the control groups (0.35 vs. 0.29, 0.21; p < 0.05). We conclude that the VEGF gene can be delivered noninvasively into the brain by Tf-VEGF-PLs. Postischemic treatment with Tf-VEGF-PLs effectively promoted neuroprotection and vascular regeneration in the chronic stage of cerebral infarction.


Endocrinology | 2013

Inhibition of PI3K/AKT/mTOR Pathway Enhances Temozolomide-Induced Cytotoxicity in Pituitary Adenoma Cell Lines in Vitro and Xenografted Pituitary Adenoma in Female Nude Mice

Congxin Dai; Bo Zhang; Xiaohai Liu; Sihai Ma; Yakun Yang; Yong Yao; Ming Feng; Xinjie Bao; Guilin Li; Janxin Wang; Kai Guo; Wenbin Ma; Bing Xing; Wei Lian; Jianqi Xiao; Feng Cai; Hongbin Zhang; Renzhi Wang

Invasive pituitary adenomas (PAs) are often refractory to standard therapy and salvage treatment with temozolomide (TMZ). Hyperactivation of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway contributes to chemotherapy resistance in many cancers. XL765, a novel dual-PI3K/mTOR inhibitor, has recently shown its efficacy as a monotherapy and in combination with conventional therapeutics in many cancers. The hyperactive PI3K/AKT/mTOR pathway frequently occurs in invasive PAs. In this study, we investigated whether XL765 sensitizes PA cells to TMZ in vitro and in vivo. Experiments were carried out to evaluate the effect of XL765 and TMZ alone or in combination on cell proliferation and apoptosis of PA cell lines (αT3-1, GH3, and MMQ) in vitro as well as the tumor growth and serum GH and prolactin secretions in a GH3 xenograft tumor model of female nude mice. XL765 and TMZ synergistically inhibited the growth of PA cell lines and induced apoptosis. Combination of XL765 and TMZ synergistically inhibited tumor growth, decreased serum GH and prolactin levels, and reduced the sacrifice rate of GH3 xenograft tumor models without increased systemic side effects. In addition, XL765 in combination with TMZ dramatically decreased phosphorylation of AKT and mTOR as well as the expression of Bcl-2. The increased expression of cleaved poly (ADP-ribose) polymerase and Bcl-2-associated X protein along with elevated caspase-3/7 activity were also observed in the combination group. Therefore, dual inhibitors of PI3K and mTOR may enhance alkylating agent-mediated cytotoxicity and provide a novel regimen in the treatment of invasive PAs.


Biomaterials | 2012

Neuronal regeneration and protection by collagen-binding BDNF in the rat middle cerebral artery occlusion model

Jian Guan; Weimin Tong; Wenyong Ding; Shiwei Du; Zhifeng Xiao; Qianqian Han; Zhaohui Zhu; Xinjie Bao; Ximin Shi; Chenxi Wu; Jiani Cao; Yi Yang; Wenbin Ma; Guilin Li; Yong Yao; Jun Gao; Junji Wei; Jianwu Dai; Renzhi Wang

It has been well confirmed that brain-derived neurotrophic factor (BDNF) has therapeutic effects following stroke. However, it is difficult to be maintained at a sufficient concentration of BDNF in the infarcted hemisphere. We have shown in our previous work that BDNF fused with a collagen-binding domain (CBD-BDNF) could specifically bind to collagen. The ventricular ependyma of the brain is rich in collagen. Therefore, we have speculated that in the infarcted hemisphere, CBD-BDNF will bind to the collagen of the ventricular ependyma and stimulate the cell proliferation in the subventricular zone (SVZ). Using a rat middle cerebral artery occlusion model (MCAO), we injected CBD-BDNF into the lateral ventricle of MCAO rats. The results demonstrated that CBD-BDNF was retained at high levels in the infarcted hemisphere, promoted neural regeneration and angiogenesis, reduced cell loss, decreased apoptosis, and improved functional recovery. In addition, brain perfusion and metabolism, as evaluated by SPECT and PET, were improved in the CBD-BDNF treated group.


Cell Transplantation | 2014

Intra-arterial delivery of human bone marrow mesenchymal stem cells is a safe and effective way to treat cerebral ischemia in rats.

Shiwei Du; Jian Guan; Gengsheng Mao; Yang Liu; Sihai Ma; Xinjie Bao; Jun Gao; Ming Feng; Guilin Li; Wenbin Ma; Yi Yang; Robert Chunhua Zhao; Renzhi Wang

Cerebral ischemic stroke is a very common condition that can cause death and disability. Studies have confirmed that stem cells have therapeutic effects if administered after a stroke. There is still a great deal of debate regarding the best route for cell transplantation. Intravascular delivery is the most commonly used one. In this study, the therapeutic effects of bone marrow stem cells (BMSCs) delivered by intra-arterial (IA) and intravenous (IV) injection in a rat transient middle cerebral artery occlusion model (MCAO) are compared. Histological analysis demonstrated that the IA route bypasses the pulmonary system and directs the cells to the ischemic parts of the brain more efficiently. The BMSCs delivered via the IA route promoted angiogenesis and improved functional recovery. The cerebral blood flow (CBF) of the rats was monitored during the IA injection process. No reduction in CBF or microstrokes was detected. Brain perfusion and metabolism, as evaluated by SPECT and PET, were better in rats treated with cells delivered via IA. Results showed that the IA route is a safe and effective way to transplant hBMSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.


International Journal of Cancer | 2013

Pyrimethamine sensitizes pituitary adenomas cells to temozolomide through cathepsin B-dependent and caspase-dependent apoptotic pathways.

Congxin Dai; Bo Zhang; Xiaohai Liu; Kai Guo; Sihai Ma; Feng Cai; Yakun Yang; Yong Yao; Ming Feng; Xinjie Bao; Kan Deng; Yonghui Jiao; Zhenqing Wei; Wei Junji; Bing Xing; Wei Lian; Renzhi Wang

Invasive pituitary adenomas (PAs) are generally refractory to conventional therapy and salvage treatment with temozolomide (TMZ). In addition to antiprotozoan effects, pyrimethamine (PYR) has recently shown its strong antitumor activity as an antineoplastic agent or in combination with TMZ in metastatic melanoma cells. In this study, the effects of TMZ, PYR or TMZ/PYR combination on rat/mouse PA cell lines αT3‐1, GH3, MMQ and ATt‐20 as well as GH3 xenograft tumor model were evaluated. TMZ/PYR combination synergistically inhibited proliferation, invasion and induced apoptosis of these PA cell lines in vitro. Strikingly, combination treatment with TMZ and PYR produced synergistic antitumor activity and enhanced the survival rate of GH3 xenograft tumor models without increasing systemic side effects. In addition, TMZ/PYR induced cell cycle arrest, increased DNA damage, upregulated the expression of cathepsin B, BAX, cleaved PARP and phosphorylated histone H2AX as well as elevated caspase3/7, 8 and 9 activities. The decreased expression of Bcl‐2, MMP‐2 and MMP‐9 alone with cytochrome c release from mitochondria into the cytosol was also observed in the TMZ/PYR combination group. The increase in cell apoptosis due to combination with PYR was rescued by leucovorin. These data suggest that PYR may enhance the efficacy of TMZ via triggering both cathepsin B‐dependent and caspase‐dependent apoptotic pathways. Therefore, combination of PYR and TMZ may provide a novel regimen for invasive PAs refractory to standard therapy and TMZ.


International Journal of Molecular Medicine | 2013

Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model

Xinjie Bao; Fu-Yi Liu; Shan Lu; Qin Han; Ming Feng; Junji Wei; Guilin Li; Robert Chunhua Zhao; Renzhi Wang

Mesenchymal stem cells (MSCs) have been successfully used for the treatment of experimental intracerebral hemorrhage (ICH). However, the neuroprotective mechanisms through which MSCs improve neurological functional recovery are not fully understood. In the present study, we tested the hypothesis that treatment with MSCs inhibits inflammation after ICH and reduces subsequent brain injury. Adult rats subjected to stereotaxic injection of collagenase VII were transplanted with a subpopulation of human bone marrow-derived MSCs (hBMSCs), termed fetal liver kinase (Flk)-1(+) hBMSCs, or saline into the ipsilateral brain parenchyma 1 day after ICH. Significant recovery of behavior was noted in the Flk-1(+) hBMSC-treated rats beginning 3 days after ICH compared with the control group. Brain water content was significantly decreased in the ipsilateral hemispheres of the Flk-1(+) hBMSC-treated rats when compared with the controls 3 days after ICH. The relative hemorrhage volume was reduced 55 days after Flk-1(+) hBMSC treatment. However, this change was not statistically significant. Flk-1(+) hBMSCs significantly inhibited the proliferation of rat peripheral blood mononuclear cells (rPBMCs) induced in a mixed lymphocyte reaction. Consistently, we found a significant anti-inflammatory effect of Flk-1(+) hBMSCs on the ICH brain, including a decrease in neutrophil infiltration and microglial activation in the peri-ICH area, and downregulation of inflammatory mediators, such as interleukin (IL)-1β, IL-2, IL-4, IL-6, and tumor necrosis factor (TNF)-α. In addition, Flk-1+ hBMSC treatment significantly increased vascular density in the peri-ICH area, and transplanted Flk-1(+) hBMSCs were found to be incorporated into the cerebral vasculature 55 days after transplantation. Overall, these data suggest an essential role for Flk-1(+) hBMSCs in reducing inflammatory infiltration, promoting angiogenesis, and improving functional recovery after ICH in rats.


International Journal of Molecular Medicine | 2016

Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review)

Xueyuan Li; Xinjie Bao; Renzhi Wang

Despite decades of laboratory and clinical research, Alzheimers disease (AD) is still the leading cause of dementia in adults and there are no curative therapies currently available for this disease. This may be due to the pathological features of AD, which include extensive extracellular amyloid plaques and intracellular neurofibrillary tangles, as well as subsequent neuronal and synaptic loss, which begin to appear several years prior to memory loss and the damge is already irreversible and extensive at the time of clinical diagnosis. The poor therapeutic effects of current treatments necessitate the introduction of experimental models able to replicate AD pathology, particularly in the pre-symptomatic stage, and then to explore preventive and therapeutic strategies. In response to this necessity, various experimental models reproducing human AD pathology have been developed, which are also useful tools for therapeutic screening. Although none of these models fully reproduce the key features of human AD, the experimental models do provide important insight into the pathological changes which occur in AD. This review summarizes the commonly used experimental models of AD and also discusses how the models may be used to decipher the pathogenesis underlying AD and to screen novel therapies for this disease.

Collaboration


Dive into the Xinjie Bao's collaboration.

Top Co-Authors

Avatar

Renzhi Wang

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Ming Feng

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Yong Yao

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Wenbin Ma

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Kan Deng

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Junji Wei

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiaohai Liu

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Bing Xing

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Chengxian Yang

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Wei Lian

Peking Union Medical College Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge