Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinkun Shen is active.

Publication


Featured researches published by Xinkun Shen.


ACS Applied Materials & Interfaces | 2014

Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium.

Xinkun Shen; Yan Hu; Gaoqiang Xu; Weizhen Chen; Kui Xu; Qichun Ran; Pingping Ma; Yarong Zhang; Jinghua Li; Kaiyong Cai

To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol-gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron microscopy, surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy, and water contact angle measurements. The incorporated zinc existed as ZnO, which released Zn ions in a sustained manner. The Zn-incorporated samples (Ti-Zn0.08, Ti-Zn0.16, and Ti-Zn0.24) efficiently inhibited the adhesion of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. The in vitro evaluations including cell activity, alkaline phosphatase (ALP), mineralization, osteogenic genes expressions (Runx2, ALP, OPG, Col I, OPN, and OC), and tartrate-resistant acid phosphatase, confirmed that Ti-Zn0.16 sample was the optimal one to regulate the proliferation or differentiation for both osteoblasts and osteoclasts. More importantly, in vivo evaluations including Micro-CT analysis, push-out test, and histological observations verified that Ti-Zn0.16 implants could efficiently promote new bone formation after implantation for 4 and 12 weeks, respectively. The resulting material thus has potential application in orthopedic field.


Colloids and Surfaces B: Biointerfaces | 2015

Mesenchymal stem cell growth behavior on micro/nano hierarchical surfaces of titanium substrates

Xinkun Shen; Pingping Ma; Yan Hu; Gaoqiang Xu; Jun Zhou; Kaiyong Cai

Surface topography of an orthopedic implant plays an essential role in the regulation of bone formation with surrounding bone tissue. To investigate the effects of surface topography of titanium (Ti) substrates on cellular behavior of mesenchymal stem cells (MSCs), a series of micro/nano hierarchical structures were fabricated onto micro-structured titanium (Micro-Ti) substrates via a sol-gel method with spin-coat technique. Scanning electron microscopy (SEM), surface profiler, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement were employed to certify the successful fabrication of micro/nano hierarchical structures with the presence of various nano-sized TiO2 grains (20 nm, 40 nm and 80 nm, respectively) onto micro-structured surfaces. The formation mechanism of the micro/nano hierarchical structures was proposed. Moreover, the effects of those hierarchical structures on the growth behavior of MSCs were evaluated both on cellular and molecular levels in vitro. The results confirmed that micro/nano hierarchical structures with large grains (80 nm) greatly promoted the proliferation and differentiation of MSCs comparing with other small grains (20 nm and 40 nm). The study provides an alternative for the fabrication of hierarchically structured Ti implants for potential orthopedic application.


ACS Applied Materials & Interfaces | 2015

Dendrimerlike Mesoporous Silica Nanoparticles as pH-Responsive Nanocontainers for Targeted Drug Delivery and Bioimaging

Liangliang Dai; Qingfeng Zhang; Jinghua Li; Xinkun Shen; Caiyun Mu; Kaiyong Cai

In this work, we employed dendrimerlike mesoporous silica nanoparticles with hierarchical pores (HPSNs) to fabricate drug delivery system bioimaging and targeted tumor therapy in vivo. N,N-phenylenebis(salicylideneimine)dicarboxylic acid (Salphdc) was used both as the gatekeeper of HPSNs via pH-responsive coordination bonds between -COOH of Salphdc and In(3+) ions and as a fluorescence imaging agent. Folic acid was then conjugated to Salphdc as the targeting unit. The results revealed that the system could deliver model drug DOX to the tumor site with high efficiency and then cause cell apoptosis and tumor growth inhibition. Moreover, the conjugated Salphdc was proved to be a promising fluorescence probe for tracing distribution of the system in vivo. The study affords a potential nanoconainer for cancer therapy and biological imaging.


Journal of Materials Chemistry B | 2016

Alendronate-loaded hydroxyapatite-TiO2 nanotubes for improved bone formation in osteoporotic rabbits

Xinkun Shen; Pingping Ma; Yan Hu; Gaoqiang Xu; Kui Xu; Weizhen Chen; Qichun Ran; Liangliang Dai; Yonglin Yu; Caiyun Mu; Kaiyong Cai

Early mechanical fixation between an implant and native bone is critically important for successful orthopedic implantation, especially for hosts suffering osteoporosis with reduced bone mass. To endow a titanium-based implant with a desirable local anti-osteoporosis property for enhancing its early osseointegration, alendronate-loaded hydroxyapatite-TiO2 nanotube (TNT-HA-Aln) substrates were fabricated and systematically characterized in this study. The results of Aln/Ca2+ release and Ca2+ concentration in an osteoclast medium verified that the release of Aln was significantly accelerated along with the acidity rise caused by osteoclast differentiation. Other in vitro tests, such as CCK-8, alkaline phosphatase (ALP), mineralization, gene expression (Runx2, Osterix, ALP, Col I, OPN, OC, OPG and RANKL), protein production (OPG and RANKL) and tartrate-resistant acid phosphatase (TRAP), proved that TNT-HA-Aln substrates have great potential for improving osteoblast proliferation/differentiation and inhibiting osteoclast differentiation. Moreover, in vivo tests, such as the push-out test, micro-CT and H&E staining proved that TNT-HA-Aln implants could efficiently improve local osseointegration after implantation for 3 months. The study provides an alternative to exploiting drug-device combinations to enhance early osseointegration in osteoporosis.


Journal of Materials Chemistry B | 2016

A pH-responsive nanocontainer based on hydrazone-bearing hollow silica nanoparticles for targeted tumor therapy

Liangliang Dai; Qingfeng Zhang; Xinkun Shen; Qiang Sun; Caiyun Mu; Hao Gu; Kaiyong Cai

A pH-responsive drug delivery system based on hollow mesoporous silica nanoparticles (HMSNs) was fabricated for targeted tumor therapy by using hydrazone bonds as pH-sensitive linkers and hyaluronic acid (HA) molecules as both blocking and targeting agents. HMSNs were synthesized with good dispersion and dimensions of around 88 nm. Detailed material characterisation suggested that the drug delivery system was successfully constructed. It displayed a fast pH stimulus response for controlled drug release in vitro. Besides, systematic biological investigations revealed that the drug delivery system had good biocompatibility, which could effectively target tumor cells and deliver therapeutic cargo to induce tumor cell apoptosis in vitro and suppression of tumor growth in vivo. This study reports a promising drug delivery system for potential clinical application against tumor therapy.


Journal of Biomedical Materials Research Part A | 2014

Titania nanotubes dimensions-dependent protein adsorption and its effect on the growth of osteoblasts.

Weihu Yang; Xingfeng Xi; Xinkun Shen; Peng Liu; Yan Hu; Kaiyong Cai

In this study, we report the influence of titania nanotubes (TiNTs) dimensions on the adsorption of collagen (COL) and fibronectin (FN), and its subsequent effect on the growth of osteoblasts. TiNTs with different diameters of around 30 and 100 nm were prepared with anodization. The adsorption profiles of proteins and cell behaviors were evaluated using spectrophotometric measurement, immunofluorescence staining, cell viability, and cytoskeleton morphology, respectively. The results showed that although the growth of osteoblasts was highly sensitive to the dimensions TiNTs, the preadsorbed COL and FN could reduce the difference. Molecular dynamics (MD) simulation results confirmed that the main driving force for protein adsorption was the physical adsorption. The TiNTs with bigger dimensions had higher interaction energies, and thus leading to higher proteins (COL and FN) adsorption and obvious influences on cell behaviors. MD simulation revealed that the orientation and conformation of proteins adsorbed onto surfaces of TiNTs was critical for cell integrins to recognize specific sites. When FN molecules adsorbed onto the surfaces of TiNTs, their RGD (Arg-Gly-Asp) sites were easily exposed to outside and more likely to bond with the fibronectin receptors, in turn regulating the cellular behaviors.


Journal of Biomedical Materials Research Part A | 2016

Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants.

Ling Huang; Zhong Luo; Yan Hu; Xinkun Shen; Menghuan Li; Liqi Li; Yuan Zhang; Weihu Yang; Peng Liu; Kaiyong Cai

To enhance long-term survival of titanium implants in patients with osteoporosis, chitosan/gelatin multilayers containing bone morphogenetic protein 2(BMP2) and an antiosteoporotic agent of calcitonin (CT) are deposited on the Ti6Al4V (TC4) implants through layer-by-layer (LBL) electrostatic assembly technique. Here, the obtained titanium alloy implant (TC4/LBL/CT/BMP2) can regulate the release of loaded calcitonin and BMP2 agents in a sustaining manner to accelerate the bone formation and simultaneously inhibit bone resorption. In vitro results show that the bone-related cells on TC4/LBL/CT/BMP2 present the lowest production level of tartrate resistant acid phosphatase (TRAP) but the highest (p < 0.05) level of alkaline phosphatase (ALP) activity, osteocalcin production, mineralization capacity and osteoblast-related gene expression among all groups after treatment for 7 or 21 days, respectively. Besides, in vivo studies of micro-CT analysis, routine histological and immunohistochemical analysis also collectively demonstrate that the TC4/LBL/CT/BMP2 implant can dramatically promote the formation and remodeling of new bone in osteoporotic rabbits after implantation for 30 days and 90 days, respectively. In vivo push-out testing further confirms that the TC4/LBL/CT/BMP2 implant has the highest (p < 0.01) interfacial shear strength and favorable bone-implant osseointegration. Overall, this study establishes a simple and profound methodology to fabricate a biofunctional TC4 implant for the treatment of local osteoporotic fractures in vivo.


Journal of Materials Chemistry B | 2016

Influence of strontium ions incorporated into nanosheet-pore topographical titanium substrates on osteogenic differentiation of mesenchymal stem cells in vitro and on osseointegration in vivo

Kui Xu; Weizhen Chen; Yan Hu; Xinkun Shen; Gaoqiang Xu; Qichun Ran; Yonglin Yu; Caiyun Mu; Kaiyong Cai

Biophysical cues or biochemical cues were proved to efficiently regulate the fate of mesenchymal stem cells (MSCs), but their synergistic effects on the biological functions of MSCs remain to be further investigated. In this study, titanium (Ti) substrates were fabricated with distinct sub-micrometer nanosheet-pore topography via a vapor alkaline treatment method. Strontium (Sr) ions were then incorporated into the Ti substrates via ion exchange. Apart from the influence of biophysical cues from topography, MSCs were simultaneously affected by the biochemical cues from the continuously released Sr ions. The MSCs grown onto Ti substrates with Sr incorporated in them displayed higher (p < 0.05 or p < 0.01) cellular functions than those of pure Ti substrates, including proliferation, the genes and proteins expressions of osteogenic markers and mineralization potential when comparing them with the results of those MSCs grown onto pure Ti substrates. Furthermore, the in vivo investigations demonstrated that the Sr incorporated Ti implants promoted new bone formation. All the results indicated that the incorporated Sr ions and the nanosheet-pore topography of the Ti substrates synergistically enhanced the osteogenic differentiation of MSCs in vitro and osseointegration in vivo. This study advances the understanding of the synergistic influence of biophysical cues and biochemical cues on MSC osteogenic differentiation.


Journal of Materials Chemistry B | 2016

Nanosheet-pore topographical titanium substrates: a biophysical regulator of the fate of mesenchymal stem cells

Kui Xu; Xinkun Shen; Weizhen Chen; Caiyun Mu; Chao Jiang; Yongchun Zhao; Kaiyong Cai

Recent reports have demonstrated that nano- or micro-scale topography could enhance the cellular functions of stem cells. In this study, a sub-micrometer topography composed of nanosheet-pore structures was fabricated on the pure titanium surface by a simple vapor alkaline-treatment method to understand more profoundly sub-micrometer topography mediated stem cell behaviors. The topography was characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle measurements, respectively. It specifically mediated cellular functions of rat bone marrow-derived mesenchymal stem cells (MSCs) on cellular and molecular levels under either normal medium or osteoinductive medium conditions. The experimental results indicated that the topography dramatically promoted the adhesion of MSCs grown on the surface, but the shape, morphology and spreading of cells were not significantly affected. In addition, the study demonstrated that the formation of focal adhesion complexes (FAs) were highly dependent on the topography, which in turn affects the subsequent biological functions of MSCs, especially accelerating osteogenic differentiation of MSCs under different conditions. Overall, the sub-micrometer topographical titanium substrate was an excellent biophysical regulator of the fate of mesenchymal stem cells, specifically inducing their differentiation into osteoblasts.


Journal of Materials Chemistry B | 2016

Regulation of local bone remodeling mediated by hybrid multilayer coating embedded with hyaluronan-alendronate/BMP-2 nanoparticles on Ti6Al7Nb implants

Xinkun Shen; Yarong Zhang; Yan Hu; Zhong Luo; Pingping Ma; Liqi Li; Caiyun Mu; Ling Huang; Yuxia Pei; Kaiyong Cai

Osteoporosis, a common bone disease, has been identified as a major obstacle for successful implantation. Therefore, the promotion of early mechanical fixation between implants and the surrounding bone can strongly increase the success rate of orthopedic operation in osteoporosis patients. In this study, functional hyaluronan-alendronate/BMP-2 (HA-Aln/BMP-2) nanoparticles were embedded into the Gel/Chi multilayers on Ti6Al7Nb surfaces (namely Ti6Al7Nb/LBL/NP) to endow the Ti6Al7Nb-based implant with local anti-osteoporosis properties. The release test showed that the loaded BMP-2 only slowly released along with the degradation of multilayers, and no burst release emerged at the early stage. In vitro cell experiments, including cell morphology, viability, alkaline phosphatase (ALP) activity, mineralization capacity and tartrate-resistant acid phosphatase (TRAP), demonstrated that the prepared Ti6Al7Nb/LBL/NP implants not only improved the proliferation and differentiation of osteoblasts but also inhibited the maturity of osteoclasts. Moreover, the in vivo tests of the push-out test, micro-CT and histological stains further verified that the Ti6Al7Nb/LBL/NP implant was more beneficial to promoting the local osseointegration between the natural bone and the implant when compared to those of the control groups after implantation for 3 months in osteoporotic rabbits. The study demonstrated a flexible method for effectively enhancing the early osseointegration between the implant and the native osteoporotic bone.

Collaboration


Dive into the Xinkun Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Hu

Chongqing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge