Xinmei Chen
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xinmei Chen.
Molecular and Cellular Biology | 2002
Yi Wang; Steven Pennock; Xinmei Chen; Zhixiang Wang
ABSTRACT In spite of intensified efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways and no evidence to demonstrate that endosomal signaling is able to produce a biological outcome. The lack of breakthrough is due in part to the lack of means to generate endosomal signals without plasma membrane signaling. In this paper, we report the establishment of a system to specifically activate epidermal growth factor (EGF) receptor (EGFR) when it endocytoses into endosomes. We treated cells with EGF in the presence of AG-1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks the recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complexes into endosomes. The endosome-associated EGFR was then activated by removing AG-1478 and monensin. During this procedure we did not observe any surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. By using this system, we provided original evidence demonstrating that (i) the endosome can serve as a nucleation site for the formation of signaling complexes, (ii) endosomal EGFR signaling is sufficient to activate the major signaling pathways leading to cell proliferation and survival, and (iii) endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum withdrawal.
Journal of Biological Chemistry | 2004
Yi Wang; Steven Pennock; Xinmei Chen; Andrius Kazlauskas; Zhixiang Wang
Although accumulated evidence supports the concept of endosomal signaling of receptor tyrosine kinases, most results are generated from studies of epidermal growth factor receptor (EGFR). It is not clear whether the concept of endosomal signaling could be generally applied to the other receptor tyrosine kinases. For example, platelet-derived growth factor receptor (PDGFR) is very similar to EGFR in terms of both signaling and trafficking; however, little is known about the endosomal signaling of PDGFR. In this research, we applied the same approaches from our recent studies regarding EGFR endosomal signaling to investigate the endosomal signaling of PDGFR. We showed in this communication that we are able to establish a system that allows the specific activation of endosome-associated PDGFR without the activation of the plasma membrane-associated PDGFR and without disrupting the overall endocytosis pathway. By using this system, we showed that endosomal activation of PDGFR recruits various signaling proteins including Grb2, SHC, phospholipase C-γ1, and the p85α subunit of phosphatidylinositol 3-kinase into endosomes and forms signaling complexes with PDGFR. We also showed that endosomal PDGFR signaling is sufficient to activate the major signaling pathways implicated in cell proliferation and survival. Moreover, we demonstrate that endosomal PDGFR signaling is sufficient to generate physiological output including cell proliferation and cell survival.
Molecular Endocrinology | 2009
Siwei Li; Qian Wang; Yi Wang; Xinmei Chen; Zhixiang Wang
It is well established that epidermal growth factor (EGF) induces the cytoskeleton reorganization and cell migration through two major signaling cascades: phospholipase C-gamma1 (PLC-gamma1) and Rho GTPases. However, little is known about the cross talk between PLC-gamma1 and Rho GTPases. Here we showed that PLC-gamma1 forms a complex with Rac1 in response to EGF. This interaction is direct and mediated by PLC-gamma1 Src homology 3 (SH3) domain and Rac1 (106)PNTP(109) motif. This interaction is critical for EGF-induced Rac1 activation in vivo, and PLC-gamma1 SH3 domain is actually a potent and specific Rac1 guanine nucleotide exchange factor in vitro. We have also demonstrated that the interaction between PLC-gamma1 SH3 domain and Rac1 play a significant role in EGF-induced F-actin formation and cell migration. We conclude that PLC-gamma1 and Rac1 coregulate EGF-induced cell cytoskeleton remodeling and cell migration by a direct functional interaction.
EMBO Reports | 2001
Xinmei Chen; Zhixiang Wang
Rab5 and phosphatidylinositol 3‐kinase (PI3K) have been proposed to co‐regulate receptor endocytosis by controlling early endosome fusion. However, in this report we demonstrate that inhibition of epidermal growth factor (EGF)‐stimulated PI3K activity by expression of the kinase‐deficient PI3K p110 subunit (p110Δkin) does not block the lysosomal targeting and degradation of the EGF receptor (EGFR). Moreover, inhibition of total PI3K activity by wortmannin or LY294002 significantly enlarges EGFR‐containing endosomes and dissociates the early‐endosomal autoantigen EEA1 from membrane fractions. However, this does not block the lysosomal targeting and degradation of EGFR. In contrast, transfection of cells with mutant Rab5 S34N or microinjection of anti‐Rabaptin5 antibodies inhibits EGFR endocytosis. Our results, therefore, demonstrate that PI3K is not universally required for the regulation of receptor intracellular trafficking. The present work suggests that the intracellular trafficking of EGFR is controlled by a novel endosome fusion pathway that is regulated by Rab5 in the absence of PI3K, rather than by the previously defined endosome fusion pathway that is co‐regulated by Rab5 and PI3K.
EMBO Reports | 2001
Xinmei Chen; Zhixiang Wang
The involvement of phosphatidylinositol 3‐kinase (PI3K) in membrane trafficking in mammalian cells has largely come from experiments with wortmannin. This compound inhibits endosome fusion in vitro, possibly by inhibiting the production of phosphatidylinositol (PtdIns)‐3‐P, which co‐regulates EEA1 with Rab5. However, the results from wortmannin inhibition experiments performed in vivo differ significantly. We have recently shown that wortmannin enlarges endosomes containing the epidermal growth factor receptor (EGFR) and enhances the lysosomal degradation of EGFR. In this report, we demonstrate that addition of the PI3K reaction products does not suppress wortmannin‐induced enlargement of EGFR‐containing endosomes and enhancement of EGFR degradation. Moreover, the effects of wortmannin on the intracellular trafficking of EGFR mimic those of the permanently activated Rab5 mutant, Rab5 Q79L, which stimulates endosome fusion. We also found that an inactive Rab5 mutant, Rab5 S34N, blocks wortmannin‐induced endosome enlargement and that wortmannin stimulates the activation of Rab5. We further showed that wortmannin reduced the membrane association of p120 Ras GTPase‐activating protein (GAP) and inhibited the interaction between Rab5 and p120 Ras GAP. We conclude that wortmannin alters intracellular trafficking of EGFR by activating Rab5 rather than by inhibiting PI3K.
Science Signaling | 2002
Yi Wang; Steven Pennock; Xinmei Chen; Zhixiang Wang
Despite intensive efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways or that endosomal signaling can produce biological responses. The lack of breakthrough is due in part to the inability to generate endosomal signals in isolation from plasma membrane signals. In this Protocol, we describe a system in which epidermal growth factor (EGF) receptor (EGFR) is specifically activated when it is endocytosed into endosomes. We treated cells with EGF in the presence of AG1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complex into endosomes. The endosome-associated EGFR was then activated by removing AG1478 and monensin. During this procedure, we did not observe any detectable surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. Specific activation of endosome-associated EGFR provides a unique tool to study endosomal signaling of EGFR. This method may also be applied to other receptor tyrosine kinases to study whether they, too, can signal from endosomes.
BMC Cancer | 2014
Harris Wang; Ali Hajar; Sarah Li; Xinmei Chen; Amadeo M. Parissenti; David N. Brindley; Zhixiang Wang
BackgroundChemoresistance is a major factor involved in a poor response and reduced overall survival in patients with advanced breast cancer. Although extensive studies have been carried out to understand the mechanisms of chemoresistance, many questions remain unanswered.MethodsIn this research, we used two isogenic MCF-7 breast cancer cell lines selected for resistance to doxorubicin (MCF-7DOX) or docetaxel (MCF-7TXT) and the wild type parental cell line (MCF-7CC) to study mechanisms underlying acquired resistance to taxanes in MCF-7TXT cells. Cytotoxicity assay, immunoblotting, indirect immunofluorescence and live imaging were used to study the drug resistance, the expression levels of drug transporters and various tubulin isoforms, apoptosis, microtubule formation, and microtubule dynamics.ResultsMCF-7TXT cells were cross resistant to paclitaxel, but not to doxorubicin. MCF-7DOX cells were not cross-resistant to taxanes. We also showed that multiple mechanisms are involved in the resistance to taxanes in MCF-7TXT cells. Firstly, MCF-7TXT cells express higher level of ABCB1. Secondly, the microtubule dynamics of MCF-7TXT cells are weak and insensitive to the docetaxel treatment, which may partially explain why docetaxel is less effective in inducing M-phase arrest and apoptosis in MCF-7TXT cells in comparison with MCF-7CC cells. Moreover, MCF-7TXT cells express relatively higher levels of β2- and β4-tubulin and relatively lower levels of β3-tubulin than both MCF-7CC and MCF-7DOX cells. The subcellular localization of various β-tubulin isoforms in MCF-7TXT cells is also different from that in MCF-7CC and MCF-7DOX cells.ConclusionMultiple mechanisms are involved in the resistance to taxanes in MCF-7TXT cells. The high expression level of ABCB1, the specific composition and localization of β-tubulin isoforms, the weak microtubule dynamics and its insensitivity to docetaxel may all contribute to the acquired resistance of MCF-7TXT cells to taxanes.
PLOS ONE | 2012
Peng Wu; Ping Wee; Jennifer Jiang; Xinmei Chen; Zhixiang Wang
It is well established that EGFR signals from both the plasma membrane (PM) and endosome (EN). However, very little is known about whether and how the EGFR signals at the PM and EN to differentially regulate various signaling pathways and the physiological outcomes. In this communication, we established a system that allowed the specific activations of EGFR at different cell locations: PM and EN. PM activation of EGFR is achieved by activation of endocytosis-deficient mutant EGFR1010LL/AA stably expressed in CHO cells (CHO-LL/AA cell). EN activation of EGFR is achieved by activating the wild type EGFR stably expressed in CHO cells (CHO-EGFR cell) after its internalization into EN with a previously reported protocol. We showed that both EGFR activations at PM and EN activated ERK to a similar level, but differentially stimulated transcriptional factors c-jun and c-fos. We further showed that EGFR activations at PM and EN resulted in differential spatio-temporal dynamics of phosphorylated ERK which caused the differential activation of two downstream substrates ELK1 and RSK. Finally we showed that EGFR signaling from PM and EN led to different physiological outcomes. CHO-LL/AA cells that only generate PM EGFR signals have a larger cell size and slower proliferation rate than CHO-EGFR cells. We conclude that location-specific EGFR activation differentially regulates cell functions through a spatio-temporal interplay of ERK activation.
Experimental Cell Research | 2010
Justin Pahara; Huaiping Shi; Xinmei Chen; Zhixiang Wang
Like many other receptor tyrosine kinases (RTKs), platelet-derived growth factor (PDGF) receptor beta (PDGFR-beta) is internalized and degraded in lysosomes in response to PDGF stimulation, which regulates many aspects of cell signalling. However, little is known about the regulation of PDGFR-beta endocytosis. Given that ligand binding is essential for the rapid internalization of RTKs, the events induced by the ligand binding likely contribute to the regulation of ligand-induced RTK internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. In this communication, we examined the role of PDGFR-beta kinase activity, PDGFR-beta dimerization and PDGFR-beta C-terminal motifs in PDGF-induced PDGFR-beta internalization. We showed that inhibition of PDGFR-beta kinase activity by chemical inhibitor or mutation did not block PDGF-induced PDGFR-beta endocytosis, suggesting that the kinase activity is not essential. We further showed that dimerization of PDGFR-beta is essential and sufficient to drive PDGFR-beta internalization independent of PDGFR-beta kinase activation. Moreover, we showed that the previously reported 14 amino acid sequence 952-965 is required for PDGF-induced PDGFR-beta internalization. Most importantly, we showed that this PDGFR-beta internalization motif is exchangeable with the EGFR internalization motif (1005-1017) in mediating ligand-induced internalization of both PDGFR-beta and EGFR. This indicates a common mechanism for the internalization of both PDGFR-beta and EGFR.
Journal of Cell Science | 2015
Qian Wang; Xinmei Chen; Zhixiang Wang
ABSTRACT We have shown previously that epidermal growth factor (EGF) receptor (EGFR) endocytosis is controlled by EGFR dimerization. However, it is not clear how the dimerization drives receptor internalization. We propose that EGFR endocytosis is driven by dimerization, bringing two sets of endocytic codes, one contained in each receptor monomer, in close proximity. Here, we tested this hypothesis by generating specific homo- or hetero-dimers of various receptors and their mutants. We show that ErbB2 and ErbB3 homodimers are endocytosis deficient owing to the lack of endocytic codes. Interestingly, EGFR–ErbB2 or EGFR–ErbB3 heterodimers are also endocytosis deficient. Moreover, the heterodimer of EGFR and the endocytosis-deficient mutant EGFR&Dgr;1005–1017 is also impaired in endocytosis. These results indicate that two sets of endocytic codes are required for receptor endocytosis. We found that an EGFR–PDGFR&bgr; heterodimer is endocytosis deficient, although both EGFR and PDGFR&bgr; homodimers are endocytosis-competent, indicating that two compatible sets of endocytic codes are required. Finally, we found that to mediate the endocytosis of the receptor dimer, the two sets of compatible endocytic codes, one contained in each receptor molecule, have to be spatially coordinated.