Xinqiao Jia
University of Delaware
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xinqiao Jia.
Journal of Biomaterials Science-polymer Edition | 2007
Michael Goldberg; Robert Langer; Xinqiao Jia
Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering.
Macromolecular Bioscience | 2009
Xinqiao Jia; Kristi L. Kiick
Artificial ECMs that not only closely mimic the hybrid nature of the natural ECM but also provide tunable material properties and enhanced biological functions are attractive candidates for tissue engineering applications. This review summarizes recent advances in developing multicomponent hybrid hydrogels by integrating modular and heterogeneous building blocks into well-defined, multifunctional hydrogel composites. The individual building blocks can be chemically, morphologically, and functionally diverse, and the hybridization can occur at molecular level or microscopic scale. The modular nature of the designs, combined with the potential synergistic effects of the hybrid systems, has resulted in novel hydrogel matrices with robust structure and defined functions.
Biomaterials | 2009
Lisa A. Gurski; Amit K. Jha; Chu Zhang; Xinqiao Jia; Mary C. Farach-Carson
The current investigation aimed to develop a biomimetic, three-dimensional (3D) culture system for poorly adherent bone metastatic prostate cancer cells (C4-2B) for use as an in vitro platform for anti-cancer drug screening. To this end, hyaluronic acid (HA) derivatives carrying complementary aldehyde (HAALD) and hydrazide (HAADH) groups were synthesized and characterized. In situ encapsulation of C4-2B cells was achieved by simple mixing of HAALD and HAADH in the presence of the cells. Unlike two-dimensional (2D) monolayer culture in which cells adopt an atypical spread morphology, cells residing in the HA matrix formed distinct clustered structures which grew and merged, reminiscent of real tumors. Anti-cancer drugs added to the media surrounding the cell/gel construct diffused into the gel and killed the embedded cells. The HA hydrogel system was used successfully to test the efficacy of anti-cancer drugs including camptothecin, docetaxel, and rapamycin, alone and in combination, including specificity, dose and time responses. Responses of cells to anti-neoplastics differed between the 3D HA hydrogel and 2D monolayer systems. We suggest that the data obtained from 3D HA systems is superior to that from conventional 2D monolayers as the 3D system better reflects the bone metastatic microenvironment of the cancer cells.
Soft Matter | 2012
Xian Xu; Amit K. Jha; Daniel A. Harrington; Mary C. Farach-Carson; Xinqiao Jia
Hyaluronic acid (HA) is one of natures most versatile and fascinating macromolecules. Being an essential component of the natural extracellular matrix (ECM), HA plays an important role in a variety of biological processes. Inherently biocompatible, biodegradable and non-immunogenic, HA is an attractive starting material for the construction of hydrogels with desired morphology, stiffness and bioactivity. While the interconnected network extends to the macroscopic level in HA bulk gels, HA hydrogel particles (HGPs, microgels or nanogels) confine the network to microscopic dimensions. Taking advantage of various scaffold fabrication techniques, HA hydrogels with complex architecture, unique anisotropy, tunable viscoelasticity and desired biologic outcomes have been synthesized and characterized. Physical entrapment and covalent integration of hydrogel particles in a secondary HA network give rise to hybrid networks that are hierarchically structured and mechanically robust, capable of mediating cellular activities through the spatial and temporal presentation of biological cues. This review highlights recent efforts in converting a naturally occurring polysaccharide to drug releasing hydrogel particles, and finally, complex and instructive macroscopic networks. HA-based hydrogels are promising materials for tissue repair and regeneration.
Biotechnology Advances | 2014
Xian Xu; Mary C. Farach-Carson; Xinqiao Jia
Cancer occurs when cells acquire genomic instability and inflammation, produce abnormal levels of epigenetic factors/proteins and tumor suppressors, reprogram the energy metabolism and evade immune destruction, leading to the disruption of cell cycle/normal growth. An early event in carcinogenesis is loss of polarity and detachment from the natural basement membrane, allowing cells to form distinct three-dimensional (3D) structures that interact with each other and with the surrounding microenvironment. Although valuable information has been accumulated from traditional in vitro studies in which cells are grown on flat and hard plastic surfaces (2D culture), this culture condition does not reflect the essential features of tumor tissues. Further, fundamental understanding of cancer metastasis cannot be obtained readily from 2D studies because they lack the complex and dynamic cell-cell communications and cell-matrix interactions that occur during cancer metastasis. These shortcomings, along with lack of spatial depth and cell connectivity, limit the applicability of 2D cultures to accurate testing of pharmacologically active compounds, free or sequestered in nanoparticles. To recapitulate features of native tumor microenvironments, various biomimetic 3D tumor models have been developed to incorporate cancer and stromal cells, relevant matrix components, and biochemical and biophysical cues, into one spatially and temporally integrated system. In this article, we review recent advances in creating 3D tumor models employing tissue engineering principles. We then evaluate the utilities of these novel models for the testing of anticancer drugs and their delivery systems. We highlight the profound differences in responses from 3D in vitro tumors and conventional monolayer cultures. Overall, strategic integration of biological principles and engineering approaches will both improve understanding of tumor progression and invasion and support discovery of more personalized first line treatments for cancer patients.
Acta Biomaterialia | 2014
Kevin T. Dicker; Lisa A. Gurski; Swati Pradhan-Bhatt; Robert L. Witt; Mary C. Farach-Carson; Xinqiao Jia
Hyaluronan (HA) is a linear polysaccharide with disaccharide repeats of d-glucuronic acid and N-acetyl-d-glucosamine. It is evolutionarily conserved and abundantly expressed in the extracellular matrix (ECM), on the cell surface and even inside cells. Being a simple polysaccharide, HA exhibits an astonishing array of biological functions. HA interacts with various proteins or proteoglycans to organize the ECM and to maintain tissue homeostasis. The unique physical and mechanical properties of HA contribute to the maintenance of tissue hydration, the mediation of solute diffusion through the extracellular space and the lubrication of certain tissues. The diverse biological functions of HA are manifested through its complex interactions with matrix components and resident cells. Binding of HA with cell surface receptors activates various signaling pathways, which regulate cell function, tissue development, inflammation, wound healing and tumor progression and metastasis. Taking advantage of the inherent biocompatibility and biodegradability of HA, as well as its susceptibility to chemical modification, researchers have developed various HA-based biomaterials and tissue constructs with promising and broad clinical potential. This paper illustrates the properties of HA from a matrix biology perspective by first introducing the principles underlying the biosynthesis and biodegradation of HA, as well as the interactions of HA with various proteins and proteoglycans. It next highlights the roles of HA in physiological and pathological states, including morphogenesis, wound healing and tumor metastasis. A deeper understanding of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for the engineering of complex tissues and tissue models.
Biomaterials | 2011
Amit K. Jha; Xian Xu; Randall L. Duncan; Xinqiao Jia
We have created hyaluronic acid (HA)-based, cell-adhesive hydrogels that direct the initial attachment and the subsequent differentiation of human mesenchymal stem cells (MSCs) into pre-osteoblasts without osteogenic supplements. HA-based hydrogel particles (HGPs) with an average diameter of 5-6 μm containing an estimated 2.2 wt% gelatin (gHGPs) were synthesized by covalent immobilization of gelatin to HA HGPs prepared via an inverse emulsion polymerization technique. Separately, a photocrosslinkable HA macromer (HAGMA) was synthesized by chemical modification of HA with glycidyl methacrylate (GMA). Doubly crosslinked networks (DXNs) were engineered by embedding gHGPs in a secondary network established by HAGMA at a particle concentration of 2.5 wt%. The resultant composite gels, designated as HA-gHGP, have an average compressive modulus of 21 kPa, and are non-toxic to the cultured MSCs. MSCs readily attached to these gels, exhibiting an early stage of stress fiber assembly 3 h post seeding. By day 7, stellate-shaped cells with extended filopodia were found on HA-gHGP gels. Moreover, cells had migrated deep into the matrix, forming a three dimensional, branched and interconnected cell community. Conversely, MSCs on the control gels lacking gelatin moieties formed isolated spheroids with rounded cell morphology. After 28 days of culture on HA-gHGP, Type I collagen production and mineral deposition were detected in the absence of osteogenic supplements, suggesting induction of osteogenic differentiation. In contrast, cells on the control gels expressed markers for adipogenesis. Overall, the HA-gHGP composite matrix has great promise for directing the osteogenic differentiation of MSCs by providing an adaptable environment through the spatial presentation of cell-adhesive modules.
Biomaterials | 2009
Amit K. Jha; Weidong Yang; Catherine B. Kirn-Safran; Mary C. Farach-Carson; Xinqiao Jia
We have developed a biomimetic growth factor delivery system that effectively stimulates the chondrogenic differentiation of the cultured mesenchymal stem cells via the controlled presentation of bone morphogenetic protein-2 (BMP-2). Hyaluronic acid (HA)-based, microscopic hydrogel particles (HGPs) with inherent nanopores and defined functional groups were synthesized by an inverse emulsion polymerization technique. Recombinantly produced, heparan sulfate (HS)-bearing perlecan domain I (PlnDI) was covalently immobilized to HA HGPs (HGP-P(1)) via a flexible poly(ethylene glycol) (PEG) linker through the lysine amines in the core protein of PlnDI employing reductive amination. Compared to HGP without PlnDI, HGP-P(1) exhibited significantly (p<0.05) higher BMP-2 binding capacity and distinctly different BMP-2 release kinetics. Heparitinase treatment increased the amount of BMP-2 released from HGP-P(1), confirming the HS-dependent BMP-2 binding. While BMP-2 was released from HGPs with a distinct burst release followed by a minimal cumulative release, its release from HGP-P(1) exhibited a minimal burst release followed by linear release kinetics over 15 days. The bioactivity of the hydrogel particles was evaluated using micromass culture of multipotent mesenchymal stem cells (MSCs), and the chondrogenic differentiation was assessed by the production of glycosaminoglycan, aggrecan and collagen type II. Our results revealed that BMP-2 loaded HGP-P(1) stimulates more robust cartilage specific ECM production as compared to BMP-2 loaded HGP, due to the ability of HGP-P(1) to potentiate BMP-2 and modulate its release with a near zero-order release kinetics. The PlnDI-conjugated, HA HGPs provide an improved BMP-2 delivery system for stimulating chondrogenic differentiation in vitro, with potential therapeutic application for cartilage repair and regeneration.
Biomaterials | 2012
Xian Xu; Lisa A. Gurski; Chu Shu Zhang; Daniel A. Harrington; Mary C. Farach-Carson; Xinqiao Jia
Cancer cells cultured in physiologically relevant, three-dimensional (3D) matrices can recapture many essential features of native tumor tissues. In this study, a hyaluronic acid (HA)-based bilayer hydrogel system that not only supports the tumoroid formation from LNCaP prostate cancer (PCa) cells, but also simulates their reciprocal interactions with the tumor-associated stroma was developed and characterized. HA hydrogels were prepared by mixing solutions of HA precursors functionalized with acrylate groups (HA-AC) and reactive thiols (HA-SH) under physiological conditions. The resultant viscoelastic gels have an average elastic modulus of 234 ± 30 Pa and can be degraded readily by hyaluronidase. The orthogonal and cytocompatible nature of the crosslinking chemistry permits facile incorporation of cytokine-releasing particles and PCa cells. In our bilayer hydrogel construct, the top layer contains heparin (HP)-decorated, HA-based hydrogel particles (HGPs) capable of releasing heparin-binding epidermal growth factor-like growth factor (HB-EGF) in a sustained manner at a rate of 2.5 wt%/day cumulatively. LNCaP cells embedded in the bottom layer receive the growth factor signals from the top, and in response form enlarging tumoroids with an average diameter of 85 μm by day 7. Cells in 3D hydrogels assemble into spherical tumoroids, form close cellular contacts through E-cadherin, and show cortical organization of F-actin, whereas those plated as 2D monolayers adopt a spread-out morphology. Compared to cells cultured on 2D, the engineered tumoroids significantly increased the expression of two pro-angiogenic factors, vascular endothelial growth factor-165 (VEGF(165)) and interleukin-8 (IL-8), both at mRNA and protein levels. Overall, the HA model system provides a useful platform for the study of tumor cell responses to growth factors and for screening of anticancer drugs targeting these pathways.
Acta Biomaterialia | 2011
Xian Xu; Amit K. Jha; Randall L. Duncan; Xinqiao Jia
We are interested in developing hydrophilic particulate systems that are capable of sequestering growth factors, regulating their release and potentiating their biological functions. To this end heparin (HP)-decorated, hyaluronic acid (HA)-based hydrogel particles (HGPs) were synthesized using an inverse emulsion polymerization technique employing divinyl sulfone as the crosslinker. By varying the feed composition of the aqueous phase the amount of HP integrated in the particles can be systematically tuned. The resulting microscopic particles are spherical in shape and contain nanosized pores suitable for growth factor encapsulation. The covalently immobilized HP retained its ability to bind bone morphogenetic protein-2 (BMP-2) specifically, and its release kinetics can be adjusted by tuning the particle composition. Compared with pure HA particles the hybrid HA/HP HGPs show a higher BMP-2 loading capacity. While BMP-2 was released from HA HGPs with a significant initial burst, a near zero order release kinetics was observed from HA/HP hybrid particles with an optimized heparin content of 0.55 μg per mg HGPs. The ability of HA/HP hybrid particles to present BMP-2 in a controlled manner, combined with the innate bioactivity of HA, induced robust and consistent chondrogenic differentiation of murine mesenchymal stem cells, as shown by up-regulation of the mRNA levels of chondrogenic markers and the production of cartilage-specific extracellular matrix components. The simplicity of the particle synthesis, combined with the defined biological activities of the constituent building blocks, renders the HP-decorated, HA-based hydrogel particle system an attractive candidate for the sustained release of BMP-2, possibly for cartilage repair and regeneration.