Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinquan Wang is active.

Publication


Featured researches published by Xinquan Wang.


Journal of Agricultural and Food Chemistry | 2011

Residue analysis and degradation studies of fenbuconazole and myclobutanil in strawberry by chiral high-performance liquid chromatography-tandem mass spectrometry.

Hu Zhang; Xinquan Wang; Mingrong Qian; Xiangyun Wang; Hao Xu; Mingfei Xu; Qiang Wang

A simple and sensitive enantioselective method for the determination of fenbuconazole and myclobutanil in strawberry was developed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Fenbuconazole and myclobutanil residues in strawberry were extracted with acetonitrile containing 1% acetic acid, and an aliquot was cleaned up with PSA (primary and secondary amine) and C(18) sorbent. The direct resolution of fenbuconazole and myclobutanil enantiomers was performed on a cellulose tris (3,5-dimethylphenylcarbamate) column using acetonitrile-0.1% formic acid solution (60:40, v/v) as the mobile phase. Quantification was achieved using matrix-matched standard calibration curves, and the limits of quantification for fenbuconazole and myclobutanil enantiomers in strawberry were both 2 μg/kg. The method was successfully utilized to investigate the probable enantioselective degradation of fenbuconazole and myclobutanil in strawberry. The results showed that the degradation of the fenbuconazole and myclobutanil enantiomers in strawberry followed pseudofirst-order kinetics (R(2) > 0.97). The results from this study revealed that the degradation of fenbuconazole in strawberry was not enantioselective, while the degradation of myclobutanil was enantioselective, and the (+)-myclobutanil showed a faster degradation than (-)-myclobutanil in strawberry, resulting in the relative enrichment of (-)-myclobutanil in residue. The results could provide a reference to fully evaluate the risks of these two fungicides.


Chirality | 2012

Enantioselective degradation of tebuconazole in cabbage, cucumber, and soils

Xinquan Wang; Xuesong Wang; Hu Zhang; Changxing Wu; Xiangyun Wang; Hao Xu; Xiaofu Wang; Zhen Li

The enantioselective degradation of tebuconazole has been investigated to elucidate the behaviors in agricultural soils, cabbage, and cucumber fruit. Rac-tebuconazole was fortified into three types of agricultural soils and sprayed foliage of cabbage and cucumber, respectively. The degradation kinetics, enantiomer fraction and enantiomeric selectivity were determined by reverse-phase high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) on a Lux amylose-2 chiral column. The process of the degradation of tebuconazole enantiomers followed first-order kinetic in the test soils and vegetables. It has been shown that the degradation of tebuconazole was enantioselective. The results indicated that the (+)-S-tebuconazole showed a faster degradation in cabbage, while the (-)-R-tebuconazole dissipated faster than (+)-S-form in cucumber fruit and the test soils.


Journal of Separation Science | 2012

HPLC-MS/MS enantioseparation of triazole fungicides using polysaccharide-based stationary phases.

Hu Zhang; Mingrong Qian; Xinquan Wang; Xiangyun Wang; Hao Xu; Qiang Wang; Minghua Wang

The enantiomeric separation of 21 triazole fungicides was carried out on four polysaccharide-derived chiral stationary phases in the reversed phase separation mode using high performance liquid chromatography coupled with tandem mass spectrometry. All fungicides were detected in electrospray ionization (ESI) positive mode with selected reaction monitoring (SRM). Complete enantioseparation was achieved for 21 fungicides except for difenoconazole based on cellulose tris (3,5-dimethylphenylcarbamate) and cellulose tris (3-chloro-4-methylphenyl carbamate) columns by optimizing experimental conditions including mobile phase and column temperature. Mobile phase was 0.1% formic acid aqueous solution mixed with methanol or acetonitrile in different proportions. Among all the fungicides, 15 with two enantiomers and three with four stereoisomers (bitertanol, bromuconazole, and cyproconazole) were successfully separated at 25°C. Enantioseparation for the other three fungicides (propiconazole, triadimenol, and difenoconazole) with four stereoisomers could be achieved by changing the column temperature from 10 to 40°C. Propiconazole and triadimenol were enantioseparated on baseline at 40 and at 35°C, respectively, and difenoconazole was enantioseparated partially with the R(s) > 1.1 at 25°C. Moreover, linearities and limits of detection (LODs) of 21 fungicides except for difenoconazole were studied, showing coefficients of determination (R(2)) higher than 0.99 and LODs lower than 2.5 μg/L.


Journal of Agricultural and Food Chemistry | 2012

Enantioselective analysis and degradation studies of isocarbophos in soils by chiral liquid chromatography-tandem mass spectrometry.

Hu Zhang; Xinquan Wang; Shulin Zhuang; Nuo Jin; Xiangyun Wang; Mingrong Qian; Hao Xu; Peipei Qi; Qiang Wang; Minghua Wang

An enantioselective method is presented for the determination of isocarbophos in soil by liquid chromatography coupled with tandem mass spectrometry. The pesticide residues in soil samples were extracted with acetonitrile, and complete enantioseparation was obtained on an amylose tris(3,5-dimethylphenylcarbamate) chiral column using acetonitrile/2 mM ammonium acetate solution containing 0.1% formic acid (60:40, v/v) as the mobile phase. The absolute configuration of isocarbophos enantiomers was determined by the combination of experimental and calculated electronic circular dichroism spectra. The method was utilized to investigate the degradation of isocarbophos in soils (Changchun, Hangzhou, and Zhengzhou) under sterilized or native conditions. Isocarbophos enantiomers were configurationally stable in the selected soils, and the pesticide degradation was not enantioselective in the sterilized condition. The degradation behavior of rac-isocarbophos was different under native conditions, with no enantioselectivity in the Changchun soil and with the S-(+)-isocarbophos enriched in the Hangzhou and Zhengzhou soils.


Environmental Science & Technology | 2013

Environmental behavior of the chiral organophosphorus insecticide acephate and its chiral metabolite methamidophos: enantioselective transformation and degradation in soils.

Xiangyun Wang; Zhen Li; Hu Zhang; Junfeng Xu; Peipei Qi; Hao Xu; Qiang Wang; Xinquan Wang

Acephate is a widely used organophosphorus insecticide globally, although there are some concerns about its usage with regard to acute consumer exposure and side-effects on nontarget organisms. These concerns are always attributed to the acephate metabolite methamidophos. In the many reports about the environmental behavior of acephate and its metabolite, none pay any attention to the chirality of them. In this study, the enantiomeric transformation and degradation of acephate was investigated in three soils under laboratory conditions using enantioselective GC-MS/MS. Racemic and enantiopure compounds were incubated in separate experiments. The degradation of racemates was shown to be enantioselective in unsterilized soils but not in the sterilized soils, thus confirming the enantioselectivity was microbially based. The priority of enantiomer degradation and transformation varied among soils and racemates. R-(+)-methamidophos was enriched in the Zhengzhou soil, but degraded faster in the Changchun and Nanchang soils than its antipode. For acephate, the Nanchang soil enriched R-(+)-acephate, and S-(-)-acephate accumulated in the other two soils. Acephate and methamidophos were both configurationally stable in soil, showing no interconversion of R-(+)- to S-(-)-enantiomers, or vice versa. The conversion of acephate to methamidophos proceeded with retention of configuration. Generally, the degradation followed approximate first-order kinetics, but showed significant lag phases.


Journal of Agricultural and Food Chemistry | 2012

Enantioselective residue dissipation of hexaconazole in cucumber (Cucumis sativus L.), head cabbage (Brassica oleracea L. var. caulorapa DC.), and soils.

Xinquan Wang; Hu Zhang; Hao Xu; Xiangyun Wang; Changxing Wu; Hongda Yang; Zhen Li; Qiang Wang

In this study, the enantioselective dissipation behavior of hexaconazole was investigated in cucumber fruit, head cabbage, and two different types of agricultural soils. The dissipation kinetics was determined by reverse-phase liquid chromatography-tandem mass spectrometry on a cellulose tris (3-chloro-4-methylphenylcarbamate) chiral column. Dissipation rates of hexaconazole enantiomers followed first-order kinetics; the residues of (+)-enantiomer decreased more rapidly than (-)-enantiomer in cucumber and head cabbage, resulting in relative enrichment of the (-)-form, while the two enantiomers showed similar degradation rates in the tested soils. These results indicate substantial enantioselectivity in the residue dissipation of hexaconazole enantiomers in cucumber and head cabbage; however, nonenantioselective dissipation was observed in the tested soils.


Journal of Separation Science | 2012

Enantioselective determination of acylamino acid fungicides in vegetables and fruits by chiral liquid chromatography coupled with tandem mass spectrometry

Hu Zhang; Xinquan Wang; Lixia Jin; Mingrong Qian; Xiangyun Wang; Hao Xu; Peipei Qi; Qiang Wang; Minghua Wang

An efficient and sensitive enantioselective method for simultaneous determination of three acylamino acid fungicides in vegetables and fruits was presented by high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry. The three fungicides (benalaxyl, furalaxyl, and metalaxyl) residues in samples were extracted with acetonitrile containing 1% acetic acid and an aliquot was cleaned up with Si-(CH(2))(3)-NH-(CH(2))(2)-NH(2) and C(18) sorbent. Complete enantioseparation of three acylamino acid fungicides enantiomers was obtained under reversed-phase conditions on a cellulose tris (4-chloro-3-methylphenylcarbamate) column at 25°C using acetonitrile-0.1% formic acid solution (45:55, v/v) as a mobile phase. The elution orders of the eluted enantiomers were determined by a circular dichroism (CD) detector. The linearity, matrix effect, recovery, and precision were evaluated. Good linearity was obtained over the concentration range of 0.5-250 μg/L for each enantiomer in the standard solution and sample matrix calibration curves. There was no significant matrix effect for three fungicides determination based on the method. The inter-day mean recoveries, intra-day repeatability, and inter-day reproducibility varied from 81.3 to 95.7%, 2.2 to 9.4%, and 2.3 to 9.6%, respectively. The method provided high selectivity and sensitivity, and limits of quantification for enantiomers of three fungicides in vegetables and fruits were both 1 μg/kg.


Food Chemistry | 2017

Multi-pesticides residue analysis of grains using modified magnetic nanoparticle adsorbent for facile and efficient cleanup

Zhenzhen Liu; Peipei Qi; Xiangyun Wang; Zhiwei Wang; Xiahong Xu; Wenxue Chen; Liyu Wu; Hu Zhang; Qiang Wang; Xinquan Wang

A facile, rapid sample pretreatment method was developed based on magnetic nanoparticles for multi-pesticides residue analysis of grains. Magnetite (Fe3O4) nanoparticles modified with 3-(N,N-diethylamino)propyltrimethoxysilane (Fe3O4-PSA) and commercial C18 were selected as the cleanup adsorbents to remove the target interferences of the matrix, such as fatty acids and non-polar compounds. Rice was used as the representative grain sample for method optimization. The amount of Fe3O4-PSA and C18 were systematically investigated for selecting the suitable purification conditions, and the simultaneous determination of 50 pesticides and 8 related metabolites in rice was established by liquid chromatography-tandem mass spectrometry. Under the optimal conditions, the method validation was performed including linearity, sensitivity, matrix effect, recovery and precision, which all satisfy the requirement for pesticides residue analysis. Compared to the conventional QuEChERS method with non-magnetic material as cleanup adsorbent, the present method can save 30% of the pretreatment time, giving the high throughput analysis possible.


Journal of Chromatography A | 2016

Use of liquid chromatography- quadrupole time-of-flight mass spectrometry for enantioselective separation and determination of pyrisoxazole in vegetables, strawberry and soil.

Peipei Qi; Yuwei Yuan; Zhiwei Wang; Xiangyun Wang; Hao Xu; Hu Zhang; Qiang Wang; Xinquan Wang

The present work firstly described the enantio-separation and determination of pyrisoxazole enantiomers in vegetables, strawberry and soil samples by chiral liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS). Pyrisoxazole has two chiral carbon atoms and consists of four stereoisomers. Taking the specific optical rotation measurement and MS analysis data into consideration, the four enantiomers were discriminated as (-)-A, (+)-A, (+)-B and (-)-B corresponding to their elution order under the optimum chromatographic condition. Influences of the mobile phase and column temperature on the enantio-separation selectivity of pyrisoxazole were explored. The perfect baseline separation of pyrisoxazole enantiomers can be achieved within 10min using methanol- water (70:30, v/v) as mobile phase on chiral Lux Cellulose-3 column. The thermodynamic analysis demonstrated that the enantioseparation of (-)-A and (+)-A, (+)-A and (+)-B were enthalpy driven separation, while the enantioseparation of (+)-B and (-)-B was entropy driven separation. Under the optimum method, method validation including matrix effect, linearity, sensitivity and precision were performed. At the spiked concentration of 10, 50 and 100μgkg(-1), the recoveries of the pyrisoxazole enantiomers in cucumber, tomato, pakchoi, pepper and strawberry samples were 64.2-100% (RSD≤14%); While they were relatively higher in soil samples and all around 120% (RSD ≤10%). The limits of detection are in the range from 0.2 to 1.0μgkg(-1) for cucumber, tomato, pakchoi, pepper, strawberry and soil samples. The developed method was then utilized for monitoring the degradation kinetics of pyrisoxazole enantiomers in strawberry under field trials, which provided the environmental behavior data of chiral pyrisoxazole enantiomers and consequently for further health risk assessment of the chiral pesticides.


Journal of Separation Science | 2014

Enantioselective determination of carboxyl acid amide fungicide mandipropamid in vegetables and fruits by chiral LC coupled with MS/MS

Hu Zhang; Xiangyun Wang; Xinquan Wang; Mingrong Qian; Mingfei Xu; Hao Xu; Peipei Qi; Qiang Wang; Shulin Zhuang

An efficient enantioselective method for the determination of mandipropamid in vegetables and fruits was presented by LC coupled with MS/MS. The mandipropamid residues in samples (potato, pepper, grape, and watermelon) were extracted with acetonitrile containing 1% acetic acid. An aliquot was cleaned up with primary and secondary amine and C18 sorbent. Complete enantioseparation of mandipropamid enantiomers in <4 min was obtained on a Lux Cellulose-2 column at 25°C using methanol with 0.1% formic acid/0.1% aqueous formic acid solution (85:15, v/v) as mobile phase. Good linearity was obtained over the concentration range of 0.5-250 μg/L for each enantiomer in the standard solution and sample matrix calibration curves. Quantification was achieved using matrix-matched standard calibration curves. The interday mean recoveries, intraday repeatability, and inter-day reproducibility varied from 76.4 to 97.1%, 3.4 to 9.4%, and 3.5 to 11.4%, respectively. The limits of quantification for mandipropamid enantiomers in vegetables and fruits were both 1 μg/kg. Moreover, the absolute configuration of mandipropamid enantiomers was determined by the combination of experimental and predicted electronic circular dichroism spectra, and the first eluted enantiomer was confirmed as (R)-mandipropamid on five chiral columns.

Collaboration


Dive into the Xinquan Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Xu

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar

Hu Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiahong Xu

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Minghua Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changshan Zhao

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kezhi Jiang

Hangzhou Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge