Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinqun Wu is active.

Publication


Featured researches published by Xinqun Wu.


Nature Medicine | 2009

A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses.

Shaoguang Wu; Ki Jong Rhee; Emilia Albesiano; Shervin Rabizadeh; Xinqun Wu; Hung-Rong Yen; David L. Huso; Frederick L. Brancati; Elizabeth C. Wick; Florencia McAllister; Franck Housseau; Drew M. Pardoll; Cynthia L. Sears

The intestinal flora may promote colon tumor formation. Here we explore immunologic mechanisms of colonic carcinogenesis by a human colonic bacterium, enterotoxigenic Bacteroides fragilis (ETBF). ETBF that secretes B. fragilis toxin (BFT) causes human inflammatory diarrhea but also asymptomatically colonizes a proportion of the human population. Our results indicate that whereas both ETBF and nontoxigenic B. fragilis (NTBF) chronically colonize mice, only ETBF triggers colitis and strongly induces colonic tumors in multiple intestinal neoplasia (Min) mice. ETBF induces robust, selective colonic signal transducer and activator of transcription-3 (Stat3) activation with colitis characterized by a selective T helper type 17 (TH17) response distributed between CD4+ T cell receptor-αβ (TCRαβ)+ and CD4–8–TCRγδ+ T cells. Antibody-mediated blockade of interleukin-17 (IL-17) as well as the receptor for IL-23, a key cytokine amplifying TH17 responses, inhibits ETBF-induced colitis, colonic hyperplasia and tumor formation. These results show a Stat3- and TH17-dependent pathway for inflammation-induced cancer by a common human commensal bacterium, providing new mechanistic insight into human colon carcinogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Microbiota organization is a distinct feature of proximal colorectal cancers

Christine M. Dejea; Elizabeth C. Wick; Elizabeth M. Hechenbleikner; James R. White; Jessica L. Mark Welch; Blair J. Rossetti; Scott N. Peterson; Erik Snesrud; Gary G. Borisy; Mark Lazarev; Ellen M. Stein; Jamuna Vadivelu; April Camilla Roslani; Ausuma A. Malik; Jane W. Wanyiri; Khean L. Goh; Iyadorai Thevambiga; Kai Fu; Fengyi Wan; Nicolas J. Llosa; Franck Housseau; Katharine Romans; Xinqun Wu; Florencia McAllister; Shaoguang Wu; Bert Vogelstein; Kenneth W. Kinzler; Drew M. Pardoll; Cynthia L. Sears

Significance We demonstrate, to our knowledge for the first time, that bacterial biofilms are associated with colorectal cancers, one of the leading malignancies in the United States and abroad. Colon biofilms, dense communities of bacteria encased in a likely complex matrix that contact the colon epithelial cells, are nearly universal on right colon tumors. Most remarkably, biofilm presence correlates with bacterial tissue invasion and changes in tissue biology with enhanced cellular proliferation, a basic feature of oncogenic transformation occurring even in colons without evidence of cancer. Microbiome profiling revealed that biofilm communities on paired normal mucosa cluster with tumor microbiomes but lack distinct taxa differences. This work introduces a previously unidentified concept whereby microbial community structural organization exhibits the potential to contribute to disease progression. Environmental factors clearly affect colorectal cancer (CRC) incidence, but the mechanisms through which these factors function are unknown. One prime candidate is an altered colonic microbiota. Here we show that the mucosal microbiota organization is a critical factor associated with a subset of CRC. We identified invasive polymicrobial bacterial biofilms (bacterial aggregates), structures previously associated with nonmalignant intestinal pathology, nearly universally (89%) on right-sided tumors (13 of 15 CRCs, 4 of 4 adenomas) but on only 12% of left-sided tumors (2 of 15 CRCs, 0 of 2 adenomas). Surprisingly, patients with biofilm-positive tumors, whether cancers or adenomas, all had biofilms on their tumor-free mucosa far distant from their tumors. Bacterial biofilms were associated with diminished colonic epithelial cell E-cadherin and enhanced epithelial cell IL-6 and Stat3 activation, as well as increased crypt epithelial cell proliferation in normal colon mucosa. High-throughput sequencing revealed no consistent bacterial genus associated with tumors, regardless of biofilm status. However, principal coordinates analysis revealed that biofilm communities on paired normal mucosa, distant from the tumor itself, cluster with tumor microbiomes as opposed to biofilm-negative normal mucosa bacterial communities also from the tumor host. Colon mucosal biofilm detection may predict increased risk for development of sporadic CRC.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis.

Andrew C. Goodwin; Christina E. DeStefano Shields; Shaoguang Wu; David L. Huso; Xinqun Wu; Tracy Murray-Stewart; Amy Hacker-Prietz; Shervin Rabizadeh; Patrick M. Woster; Cynthia L. Sears; Robert A. Casero

It is estimated that the etiology of 20–30% of epithelial cancers is directly associated with inflammation, although the direct molecular events linking inflammation and carcinogenesis are poorly defined. In the context of gastrointestinal disease, the bacterium enterotoxigenic Bacteroides fragilis (ETBF) is a significant source of chronic inflammation and has been implicated as a risk factor for colorectal cancer. Spermine oxidase (SMO) is a polyamine catabolic enzyme that is highly inducible by inflammatory stimuli resulting in increased reactive oxygen species (ROS) and DNA damage. We now demonstrate that purified B. fragilis toxin (BFT) up-regulates SMO in HT29/c1 and T84 colonic epithelial cells, resulting in SMO-dependent generation of ROS and induction of γ-H2A.x, a marker of DNA damage. Further, ETBF-induced colitis in C57BL/6 mice is associated with increased SMO expression and treatment of mice with an inhibitor of polyamine catabolism, N1,N4-bis(2,3-butandienyl)-1,4-butanediamine (MDL 72527), significantly reduces ETBF-induced chronic inflammation and proliferation. Most importantly, in the multiple intestinal neoplasia (Min) mouse model, treatment with MDL 72527 reduces ETBF-induced colon tumorigenesis by 69% (P < 0.001). The results of these studies indicate that SMO is a source of bacteria-induced ROS directly associated with tumorigenesis and could serve as a unique target for chemoprevention.


Infection and Immunity | 2009

Induction of Persistent Colitis by a Human Commensal, Enterotoxigenic Bacteroides fragilis, in Wild-Type C57BL/6 Mice

Ki Jong Rhee; Shaoguang Wu; Xinqun Wu; David L. Huso; Baktiar O. Karim; Augusto A. Franco; Shervin Rabizadeh; Jonathan E. Golub; Lauren E. Mathews; Jai Shin; R. Balfour Sartor; Douglas T. Golenbock; Abdel Rahim A. Hamad; Christine Gan; Franck Housseau; Cynthia L. Sears

ABSTRACT Enterotoxigenic Bacteroides fragilis (ETBF) causes diarrhea and is implicated in inflammatory bowel diseases and colorectal cancer. The only known ETBF virulence factor is the Bacteroides fragilis toxin (BFT), which induces E-cadherin cleavage, interleukin-8 secretion, and epithelial cell proliferation. A murine model for ETBF has not been characterized. Specific pathogen-free (SPF) C57BL/6J or germfree 129S6/SvEv mice were orally inoculated with wild-type ETBF (WT-ETBF) strains, a nontoxigenic WT strain of B. fragilis (WT-NTBF), WT-NTBF overexpressing bft (rETBF), or WT-NTBF overexpressing a biologically inactive mutated bft (rNTBF). In SPF and germfree mice, ETBF caused colitis but was lethal only in germfree mice. Colonic histopathology demonstrated mucosal thickening with inflammatory cell infiltration, crypt abscesses, and epithelial cell exfoliation, erosion, and ulceration. SPF mice colonized with rETBF mimicked WT-ETBF, whereas rNTBF caused no histopathology. Intestinal epithelial E-cadherin was rapidly cleaved in vivo in WT-ETBF-colonized mice and in vitro in intestinal tissues cultured with purified BFT. ETBF mice colonized for 16 months exhibited persistent colitis. BFT did not directly induce lymphocyte proliferation, dendritic cell stimulation, or Toll-like receptor activation. In conclusion, WT-ETBF induced acute then persistent colitis in SPF mice and rapidly lethal colitis in WT germfree mice. Our data support the hypothesis that chronic colonization with the human commensal ETBF can induce persistent, subclinical colitis in humans.


Inflammatory Bowel Diseases | 2007

Enterotoxigenic bacteroides fragilis: a potential instigator of colitis.

Shervin Rabizadeh; Ki Jong Rhee; Shaoguang Wu; David L. Huso; Christine M. Gan; Jonathan E. Golub; Xinqun Wu; Ming Zhang; Cynthia L. Sears

Background: Inflammatory bowel disease (IBD) is proposed to result from a dysregulated mucosal immune response to the colonic flora in genetically susceptible individuals. Enterotoxigenic Bacteroides fragilis (ETBF), a molecular subclass of the common human commensal, B. fragilis, has been associated with IBD. This study investigated whether ETBF colonization of mice initiated colitis or modified the clinical course of a colitis agonist, dextran sodium sulfate (DSS). Methods: Four‐ and 6‐week‐old C57BL/6 mice were inoculated with buffer, nontoxigenic B. fragilis (NTBF) strain 9343(pFD340), or ETBF strain 86‐5443‐2‐2 via orogastric tube. A subset of mice received 2% DSS several days pre‐ or post‐inoculation of bacteria. Clinical status was assessed throughout the experiment and severity of colonic inflammation was scored after sacrifice. Results: All mice, including those receiving DSS, were clinically well prior to bacterial inoculation. NTBF and ETBF colonization was similar. Regardless of mouse age or timing of DSS administration, mice who received ETBF+DSS experienced worse colitis reflected by less weight gain, enhanced gross disease, and greater inflammation in their colons (P < 0.05), especially in the cecum. In particular, younger mice had more extensive disease. Mice inoculated only with ETBF also exhibited colitis with more severe inflammation when compared to all other groups (P < 0.05) except the ETBF+DSS group. Conclusions: ETBF, a colonic commensal, alone stimulates colitis and significantly enhances colonic inflammation in DSS‐treated mice. This study suggests that acquisition of ETBF colonization may be a potential factor in initiation and/or exacerbation of colitis. (Inflamm Bowel Dis 2007)


Cancer Discovery | 2015

Regulatory T-cell Response to Enterotoxigenic Bacteroides fragilis Colonization Triggers IL17-Dependent Colon Carcinogenesis

Abby Geis; Hongni Fan; Xinqun Wu; Shaoguang Wu; David L. Huso; Jaime L. Wolfe; Cynthia L. Sears; Drew M. Pardoll; Franck Housseau

UNLABELLED Many epithelial cancers are associated with chronic inflammation. However, the features of inflammation that are procarcinogenic are not fully understood. Regulatory T cells (Treg) typically restrain overt inflammatory responses and maintain intestinal immune homeostasis. Their immune-suppressive activity can inhibit inflammation-associated cancers. Paradoxically, we show that colonic Tregs initiate IL17-mediated carcinogenesis in multiple intestinal neoplasia mice colonized with the human symbiote enterotoxigenic Bacteroides fragilis (ETBF). Depletion of Tregs in ETBF-colonized C57BL/6 FOXP3(DTR) mice enhanced colitis but diminished tumorigenesis associated with shifting of mucosal cytokine profile from IL17 to IFNγ; inhibition of ETBF-induced colon tumorigenesis was dependent on reduced IL17 inflammation and was independent of IFNγ. Treg enhancement of IL17 production is cell-extrinsic. IL2 blockade restored Th17 responses and tumor formation in Treg-depleted animals. Our findings demonstrate that Tregs limit the availability of IL2 in the local microenvironment, allowing the Th17 development necessary to promote ETBF-triggered neoplasia, and thus unveil a new mechanism whereby Treg responses to intestinal bacterial infection can promote tumorigenesis. SIGNIFICANCE Tregs promote an oncogenic immune response to a common human symbiote associated with inflammatory bowel disease and colorectal cancer. Our data define mechanisms by which mucosal Tregs, despite suppressing excessive inflammation, promote the earliest stages of immune procarcinogenesis via enhancement of IL17 production at the expense of IFNγ production.


Science | 2018

Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria

Christine M. Dejea; Payam Fathi; John M. Craig; Annemarie Boleij; Rahwa Taddese; Abby L. Geis; Xinqun Wu; Christina E. DeStefano Shields; Elizabeth M. Hechenbleikner; David L. Huso; Robert A. Anders; Francis M. Giardiello; Elizabeth C. Wick; Hao Wang; Shaoguang Wu; Drew M. Pardoll; Franck Housseau; Cynthia L. Sears

Biofilms provide refuge for cancerous bacteria Familial adenomatous polyposis (FAP) causes benign polyps along the colon. If left untreated, FAP leads to a high incidence of colon cancer. To understand how polyps influence tumor formation, Dejea et al. examined the colonic mucosa of FAP patients. They discovered biofilms containing the carcinogenic versions of the bacterial species Escherichia coli and Bacteroides fragilis. Colon tissue from FAP patients exhibited greater expression of two bacterial genes that produce secreted oncotoxins. Studies in mice showed that specific bacteria could work together to induce colon inflammation and tumor formation. Science, this issue p. 592 Bacterial biofilms are linked to colon cancer. Individuals with sporadic colorectal cancer (CRC) frequently harbor abnormalities in the composition of the gut microbiome; however, the microbiota associated with precancerous lesions in hereditary CRC remains largely unknown. We studied colonic mucosa of patients with familial adenomatous polyposis (FAP), who develop benign precursor lesions (polyps) early in life. We identified patchy bacterial biofilms composed predominately of Escherichia coli and Bacteroides fragilis. Genes for colibactin (clbB) and Bacteroides fragilis toxin (bft), encoding secreted oncotoxins, were highly enriched in FAP patients’ colonic mucosa compared to healthy individuals. Tumor-prone mice cocolonized with E. coli (expressing colibactin), and enterotoxigenic B. fragilis showed increased interleukin-17 in the colon and DNA damage in colonic epithelium with faster tumor onset and greater mortality, compared to mice with either bacterial strain alone. These data suggest an unexpected link between early neoplasia of the colon and tumorigenic bacteria.


Cancer Research | 2016

Redundant Innate and Adaptive Sources of IL17 Production Drive Colon Tumorigenesis

Franck Housseau; Shaoguang Wu; Elizabeth C. Wick; Hongni Fan; Xinqun Wu; Nicolas J. Llosa; Kellie N. Smith; Ada Tam; Sudipto Ganguly; Jane W. Wanyiri; Thevambiga Iyadorai; Ausama A. Malik; April Camilla Roslani; Jamunarani Vadivelu; Sara W. Van Meerbeke; David L. Huso; Drew M. Pardoll; Cynthia L. Sears

IL17-producing Th17 cells, generated through a STAT3-dependent mechanism, have been shown to promote carcinogenesis in many systems, including microbe-driven colon cancer. Additional sources of IL17, such as γδ T cells, become available under inflammatory conditions, but their contributions to cancer development are unclear. In this study, we modeled Th17-driven colon tumorigenesis by colonizing Min(Ap) (c+/-) mice with the human gut bacterium, enterotoxigenic Bacteroides fragilis (ETBF), to investigate the link between inflammation and colorectal cancer. We found that ablating Th17 cells by knocking out Stat3 in CD4(+) T cells delayed tumorigenesis, but failed to suppress the eventual formation of colonic tumors. However, IL17 blockade significantly attenuated tumor formation, indicating a critical requirement for IL17 in tumorigenesis, but from a source other than Th17 cells. Notably, genetic ablation of γδ T cells in ETBF-colonized Th17-deficient Min mice prevented the late emergence of colonic tumors. Taken together, these findings support a redundant role for adaptive Th17 cell- and innate γδT17 cell-derived IL17 in bacteria-induced colon carcinogenesis, stressing the importance of therapeutically targeting the cytokine itself rather than its cellular sources. Cancer Res; 76(8); 2115-24. ©2016 AACR.


Mucosal Immunology | 2017

The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis.

E Thiele Orberg; Hongni Fan; Ada J. Tam; Christine M. Dejea; C E Destefano Shields; Shaoguang Wu; Liam Chung; Benjamin B. Finard; Xinqun Wu; Payam Fathi; Sudipto Ganguly; J Fu; Drew M. Pardoll; Cynthia L. Sears; Franck Housseau

Enterotoxigenic Bacteroides fragilis (ETBF), a human commensal and candidate pathogen in colorectal cancer (CRC), is a potent initiator of interleukin-17 (IL-17)-dependent colon tumorigenesis in MinApc+/− mice. We examined the role of IL-17 and ETBF on the differentiation of myeloid cells into myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages, which are known to promote tumorigenesis. The myeloid compartment associated with ETBF-induced colon tumorigenesis in Min mice was defined using flow cytometry and gene expression profiling. Cell-sorted immature myeloid cells were functionally assayed for inhibition of T-cell proliferation and inducible nitric oxide synthase expression to delineate MDSC populations. A comparison of ETBF infection with that of other oncogenic bacteria (Fusobacterium nucleatum or pks+Escherichia coli) revealed a specific, ETBF-associated colonic immune infiltrate. ETBF-triggered colon tumorigenesis is associated with an IL-17-driven myeloid signature characterized by subversion of steady-state myelopoiesis in favor of the generation of protumoral monocytic-MDSCs (MO-MDSCs). Combined action of the B. fragilis enterotoxin BFT and IL-17 on colonic epithelial cells promoted the differentiation of MO-MDSCs, which selectively upregulated Arg1 and Nos2, produced NO, and suppressed T-cell proliferation. Evidence of a pathogenic inflammatory signature in humans colonized with ETBF may allow for the identification of populations at risk for developing colon cancer.


Mucosal Immunology | 2018

Non-toxigenic Bacteroides fragilis (NTBF) administration reduces bacteria-driven chronic colitis and tumor development independent of polysaccharide A

June L. Chan; Shaoguang Wu; Abby L. Geis; Gabrielle V. Chan; Talles A. M. Gomes; Sarah E. Beck; Xinqun Wu; Hongni Fan; Ada J. Tam; Liam Chung; Hua Ding; Hao Wang; Drew M. Pardoll; Franck Housseau; Cynthia L. Sears

Polysaccharide A (PSA), an immunogenic capsular component of non-toxigenic Bacteroides fragilis (NTBF) strain NCTC 9343, is reported to promote mucosal immune development and suppress colitis. Contrastingly, enterotoxigenic Bacteroides fragilis (ETBF) is highly associated with inflammatory bowel disease (IBD) and colorectal cancer (CRC), rapidly inducing IL-17-dependent murine colitis and tumorigenesis. In specific-pathogen-free (SPF) C57BL/6 wild-type (WT) and multiple intestinal neoplasia (MinApc716+/−) mice, we show that sequential treatment of the NTBF strain, 9343, followed by the ETBF strain, 86-5443-2-2 (86), diminished colitis and tumorigenesis. Mice treated simultaneously with 9343 and 86 exhibited both severe colitis and tumorigenesis. Abrogated disease severity in sequentially treated mice was attributed to 9343 strain dominance and decreased IL-17A, but 86 colonization prior to or simultaneous with 9343 mitigated the anti-inflammatory effect of 9343. Remarkably, 9343-mediated protection was independent of PSA, as sequentially treated mice receiving ΔPSA 9343 exhibited similar protection. Further, SPF WT and Min mice colonized with PSA-competent or PSA-deficient 9343 exhibited similar IL-10, IL-17, and IFN-γ responses. Treatment of 86-colonized mice with 9343 failed to disrupt 86 pathogenesis. Our findings demonstrate that 9343 colonization, independent of PSA, offers prophylaxis against colitis-inducing 86 but may not be a valid therapy once colitis is established.

Collaboration


Dive into the Xinqun Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaoguang Wu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Franck Housseau

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

David L. Huso

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Drew M. Pardoll

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hongni Fan

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Shervin Rabizadeh

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Drew M. Pardoll

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abby L. Geis

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge