Xinrui Wang
Beijing Technology and Business University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xinrui Wang.
Nano Research | 2018
Liqian Bai; Ning Xue; Yufei Zhao; Xinrui Wang; Chao Lu; Wenying Shi
Engineering of the luminescent properties for graphene quantum dots (GQDs) presents two enormous challenges: 1) The bandgap of GQDs is mainly determined by structural defects (size, shape, and the fraction of sp2 and sp3 domains), which results in non-stoichiometric nature; 2) the preparation methods limit the achievement of an accurate chemical structure of GQDs, leading to many controversial explanations over the relationship between the structural defects and bandgaps. Here, single-layered GQDs with an exact structure are obtained by in-situ reaction of intercalated precursors in the confined nanospace of layered double hydroxides (LDHs). Subsequently, the structure-property relationship is uncovered, demonstrating the enhanced fluorescence and activated room temperature phosphorescence of the as-prepared GQDs-LDHs, which originate from synergistic effects: 1) strong confinement provided by the nanospace of LDHs; 2) rich O-containing functional groups on the surface of GQDs resulting from LDH catalysis. Moreover, the colorless nature and dual-emission characteristics of GQDs-LDHs satisfy the preconditions as anti-counterfeiting markers for protecting valuable documents (bank notes, commercial invoices, etc.). Particularly, owing to the low toxicity of GQDs and the edible property of LDHs, the GQDs-LDHs/gelatin capsules could be the new generation of potential green anti-counterfeiting material in the field of food and drugs.
Colloids and Surfaces B: Biointerfaces | 2018
Li-Ping Tang; Hui-Min Cheng; Shu-Mei Cui; Xinrui Wang; Li-Ya Song; Wei Zhou; Shujing Li
DL-mandelic acid (MA) has been intercalated into Zn-Al layered double hydroxide (LDH) by an anion-exchange reaction. After intercalation of MA anions, the basal spacing of the LDH increased from 0.75 to 1.46 nm, suggesting that the MA anions were successfully intercalated into the interlayer galleries of the LDH. The structure and the thermal stability of the samples were characterized by XRD, FT-IR, TG-DTA. Studies of MA release from ZnAl-MA-LDH in hydrochloric solution (pH = 4) imply that ZnAl-MA-LDH is a better controlled release system than pure MA. Meanwhile, the mechanisms of slow release were assessed by using four commonly kinetic models. Finally, the antimicrobial activity of ZnAl-MA-LDH was tested against two kinds of bacteria and a fungus. The study confirms that the mandelic ions intercalated LDHs have the potential application as a slow release preservative in the future.
Molecules | 2017
Shujing Li; Li Yuan; Yong Chen; Wei Zhou; Xinrui Wang
The inclusion complexes between daidzein and three cyclodextrins (CDs), namely β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Me-β-CD, DS = 12.5) and (2-hydroxy)propyl-β-cyclodextrin (HP-β-CD, DS = 4.2) were prepared. The effects of the inclusion behavior of daidzein with three kinds of cyclodextrins were investigated in both solution and solid state by methods of phase-solubility, XRD, DSC, SEM, 1H-NMR and 2D ROESY methods. Furthermore, the antioxidant activities of daidzein and daidzein-CDs inclusion complexes were determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) method. The results showed that daidzein formed a 1:1 stoichiometric inclusion complex with β-CD, Me-β-CD and HP-β-CD. The results also showed that the solubility of daidzein was improved after encapsulating by CDs. 1H-NMR and 2D ROESY analyses show that the B ring of daidzein was the part of the molecule that was most likely inserted into the cavity of CDs, thus forming an inclusion complex. Antioxidant activity studies showed that the antioxidant performance of the inclusion complexes was enhanced in comparison to the native daidzein. It could be a potentially promising way to develop a new formulation of daidzein for herbal medicine or healthcare products.
Langmuir | 2016
Yong Li; Diwei Zhang; Dongsheng Bai; Shujing Li; Xinrui Wang; Wei Zhou
Two kinds of dry water (DW) particles are prepared by mixing water and hydrophobic silica particles with nanometer or micrometer dimensions, and the two DW particles are found to have similar size distributions regardless of the size of the silica shell. The CO2 uptake kinetics of DW with nanometer (nanoshell) and micrometer shells (microshell) are measured, and both uptake rate and capacity show the obvious size effect of the silica shell. The DW with a microshell possesses a larger uptake capacity, whereas the DW with a nanoshell has a faster uptake rate. By comparing the uptake kinetics of soluble NH3 and CO2 further, we found that the microshell enhances the stability and the dispersion degree of DW and the nanoshell offers a shorter path for the transit of guest gas into the water core. Furthermore, molecular dynamics simulation is introduced to illustrate the nanosize effect of the silica shell on the initial step of the gas uptake. It is found that the concentration of gas molecules close to the silica shell is higher than that in the bulk water core. With the increase in the size of the silica shell, the amount of CO2 in the silica shell decreases, and it is easier for the gas uptake to reach steady state.
RSC Advances | 2018
Shujing Li; Li Yuan; Bing Zhang; Wei Zhou; Xinrui Wang; Dongsheng Bai
The inclusion complexes of trans-polydatin and three cyclodextrins (CDs), namely β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Me-β-CD) and (2-hydroxy) propyl-β-cyclodextrin (HP-β-CD) were prepared. The effects of the inclusion behavior of trans-polydatin with three kinds of CDs were investigated in both solution and the solid state with the following methods: phase-solubility, X-ray diffraction (XRD), thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM), proton nuclear magnetic resonance (1H-NMR) and two-dimensional rotational frame nuclear overhauser effect spectroscopy (2D ROESY). The results indicated that trans-polydatin formed a 1 : 1 stoichiometric inclusion complex with CDs. Meanwhile, the solubility and thermal stability of the inclusion complexes were improved after encapsulating by CDs. Furthermore, the photostability of trans-polydatin was enhanced after forming the inclusion complexes. The antioxidant activities results showed that the antioxidant performance of the inclusion complexes was enhanced in comparison to the native trans-polydatin. Therefore, it can be a potentially promising way to promote its drug bioavailability or phytochemical preparations.
Sensors and Actuators B-chemical | 2016
Xinrui Wang; Yong Li; Li-Ping Tang; Wei Zhou; Shujing Li; Wenying Shi
Journal of Physics and Chemistry of Solids | 2017
Yong Li; Li-Ping Tang; Xinxu Ma; Xinrui Wang; Wei Zhou; Dongsheng Bai
Chinese Chemical Letters | 2017
Xinrui Wang; Yong Li; Li-Ping Tang; Wen Gan; Wei Zhou; Yu-Fei Zhao; Dongsheng Bai
Chinese Chemical Letters | 2016
Yong Li; Li-Ping Tang; Wei Zhou; Xinrui Wang
Journal of Luminescence | 2018
Xinxu Ma; Wei Zhou; Ze Zhang; Xinrui Wang; Bing Zhang; Yan-Chuan Guo