Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xintian Hu is active.

Publication


Featured researches published by Xintian Hu.


Nature Communications | 2013

Genome of the Chinese tree shrew

Yu Fan; Zhiyong Huang; Changchang Cao; Ce-Shi Chen; Yuanxin Chen; Dingding Fan; Jing He; Haolong Hou; Li-Dan Hu; Xintian Hu; Xuanting Jiang; Ren Lai; Yongshan Lang; Bin Liang; Shengguang Liao; Dan Mu; Yuanye Ma; Yuyu Niu; Xiaoqing Sun; Jinquan Xia; Jin Xiao; Zhiqiang Xiong; Lin Xu; Lan Yang; Yun Zhang; Wei Zhao; Xudong Zhao; Yong-Tang Zheng; Ju-Min Zhou; Yabing Zhu

Chinese tree shrews (Tupaia belangeri chinensis) possess many features valuable in animals used as experimental models in biomedical research. Currently, there are numerous attempts to employ tree shrews as models for a variety of human disorders: depression, myopia, hepatitis B and C virus infections, and hepatocellular carcinoma, to name a few. Here we present a publicly available annotated genome sequence for the Chinese tree shrew. Phylogenomic analysis of the tree shrew and other mammalians highly support its close affinity to primates. By characterizing key factors and signalling pathways in nervous and immune systems, we demonstrate that tree shrews possess both shared common and unique features, and provide a genetic basis for the use of this animal as a potential model for biomedical research.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys.

Xiaoli Feng; Lina Wang; Shangchuan Yang; Dongdong Qin; Jianhong Wang; Chunlu Li; Longbao Lv; Yuanye Ma; Xintian Hu

Maternal separation (MS), which can lead to hypothalamic pituitary adrenal axis dysfunction and behavioral abnormalities in rhesus monkeys, is frequently used to model early adversity. Whether this deleterious effect on monkeys is reversible by later experience is unknown. In this study, we assessed the basal hair cortisol in rhesus monkeys after 1.5 and 3 y of normal social life following an early separation. These results showed that peer-reared monkeys had significantly lower basal hair cortisol levels than the mother-reared monkeys at both years examined. The plasma cortisol was assessed in the monkeys after 1.5 y of normal social life, and the results indicated that the peak in the peer-reared cortisol response to acute stressors was substantially delayed. In addition, after 3 y of normal social life, abnormal behavioral patterns were identified in the peer-reared monkeys. They showed decreases in locomotion and initiated sitting together, as well as increases in stereotypical behaviors compared with the mother-reared monkeys. These results demonstrate that the deleterious effects of MS on rhesus monkeys cannot be compensated by a later normal social life, suggesting that the effects of MS are long-lasting and that the maternal-separated rhesus monkeys are a good animal model to study early adversity and to investigate the development of psychiatric disorders induced by exposure to early adversity.


Nature Communications | 2015

Processing of visually evoked innate fear by a non-canonical thalamic pathway

Pengfei Wei; Nan Liu; Zhijian Zhang; Yongqiang Tang; Xiaobin He; Bifeng Wu; Zheng Zhou; Yaohan Liu; Juan Li; Yi Zhang; Xuanyi Zhou; Lin Xu; Lin Chen; Guo-Qiang Bi; Xintian Hu; Fuqiang Xu; Liping Wang

The ability of animals to respond to life-threatening stimuli is essential for survival. Although vision provides one of the major sensory inputs for detecting threats across animal species, the circuitry underlying defensive responses to visual stimuli remains poorly defined. Here, we investigate the circuitry underlying innate defensive behaviours elicited by predator-like visual stimuli in mice. Our results demonstrate that neurons in the superior colliculus (SC) are essential for a variety of acute and persistent defensive responses to overhead looming stimuli. Optogenetic mapping revealed that SC projections to the lateral posterior nucleus (LP) of the thalamus, a non-canonical polymodal sensory relay, are sufficient to mimic visually evoked fear responses. In vivo electrophysiology experiments identified a di-synaptic circuit from SC through LP to the lateral amygdale (Amg), and lesions of the Amg blocked the full range of visually evoked defensive responses. Our results reveal a novel collicular–thalamic–Amg circuit important for innate defensive responses to visual threats.


Behavioural Brain Research | 2010

Environmental enrichment and chronic restraint stress in ICR mice: Effects on prepulse inhibition of startle and Y-maze spatial recognition memory

Yanmei Chen; Yu Mao; Dongming Zhou; Xintian Hu; Jianhong Wang; Yuanye Ma

In most studies regarding the improving or therapeutical effects induced by enriched environment (EE), EE was performed after the stress treatment or in patients with certain diseases. In the current study, the effects of chronic restraint stress (6h/day) in mice living in an enriched environment or standard environment (SE) were tested. Mice were randomly divided into 4 groups: non-stressed or stressed mice housed in SE or EE conditions (SE, stress+SE, EE, stress+EE). Prepulse inhibition (PPI) of startle was tested after the 2 weeks or 4 weeks stress and/or EE treatment and 1 or 2 weeks withdrawal from the 4 weeks treatment. After the 4 weeks treatment, spatial recognition memory in Y-maze was also tested. The results showed that EE increased PPI in stressed and non-stressed mice after 2 weeks treatment. No effect of EE on PPI was found after the 4 weeks treatment. 4 weeks chronic restraint stress increased PPI in mice housed in standard but not EE conditions. Stressed mice showed deficits on the 1h delay version of the Y-maze which could be prevented by living in an enriched environment. Our results indicated that living in an enriched environment reversed the impairing effects of chronic restraint stress on spatial recognition memory. However, EE did not change the effects of stress on PPI.


Cell | 2017

Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys

Yongchang Chen; Juehua Yu; Yuyu Niu; Dongdong Qin; Hailiang Liu; Gang Li; Yingzhou Hu; Jiaojian Wang; Yi Lu; Yu Kang; Yong Jiang; Kunhua Wu; Siguang Li; Jing-Kuan Wei; Jing He; Junbang Wang; Xiaojing Liu; Yuping Luo; Chenyang Si; Raoxian Bai; Kunshan Zhang; Jie Liu; Shaoyong Huang; Zhenzhen Chen; Shuang Wang; Xiaoying Chen; Xinhua Bao; Qingping Zhang; Fuxing Li; Rui Geng

Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT.


Autophagy | 2015

Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation

Ling-Yan Su; Hao Li; Li Lv; Yue-Mei Feng; Guo-Dong Li; Rongcan Luo; He-Jiang Zhou; Xiao-Guang Lei; Liang Ma; Jia-Li Li; Lin Xu; Xintian Hu; Yong-Gang Yao

Autophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity. We found an excessive activation of autophagy in monkey brain tissues and C6 cells, induced by MPTP, which is mediated by CDK5 (cyclin-dependent kinase 5). MPTP treatment significantly reduced total dendritic length and dendritic complexity of cultured primary cortical neurons and melatonin could reverse this effect. Decreased TH (tyrosine hydroxylase)-positive cells and dendrites of dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed in MPTP-treated monkeys and mice. Along with decreased TH protein level, we observed an upregulation of CDK5 and enhanced autophagic activity in the striatum of mice with MPTP injection. These changes could be salvaged by melatonin treatment or knockdown of CDK5. Importantly, melatonin or knockdown of CDK5 reduced MPTP-induced SNCA/α-synuclein aggregation in mice, which is widely thought to trigger the pathogenesis of PD. Finally, melatonin or knockdown of CDK5 counteracted the PD phenotype in mice induced by MPTP. Our findings uncover a potent role of CDK5-mediated autophagy in the pathogenesis of PD, and suggest that control of autophagic pathways may provide an important clue for exploring potential target for novel therapeutics of PD.


The Journal of Neuroscience | 2015

Mutant Alpha-Synuclein Causes Age-Dependent Neuropathology in Monkey Brain

Weili Yang; Guohao Wang; Chuan-En Wang; Xiangyu Guo; Peng Yin; Jinquan Gao; Zhuchi Tu; Zhengbo Wang; Jing Wu; Xintian Hu; Shihua Li; Xiao-Jiang Li

Parkinsons disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2–3, 7–8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Reliability of oculomotor command signals carried by individual neurons

Xintian Hu; Huihui Jiang; Chaoliang Gu; Chuan-Yu Li; David L. Sparks

The responses of sensory neurons to repeated presentations of identical stimuli can be highly reproducible. Little is known about the reliability of the motor command signals carried by individual premotor neurons. We measured the variability in the interspike intervals of the high-frequency, saccade-related bursts generated by neurons in the pontine reticular formation. During movements having similar amplitudes and velocity profiles, the interspike intervals of the high-frequency component of the bursts are very similar. The low variability in interspike intervals cannot be attributed to a burst mode characterized by fixed interspike times. Different, but repeatable, burst patterns are observed when movements having approximately the same amplitude but different velocity profiles occur. These findings suggest that the discharge of a single pontine cell is strongly correlated with the activity of other pontine burst cells. Both the high temporal precision of the saccade-related bursts and the correlated activity of pontine burst cells reduce variability in the signals sent to the motoneuron pools and, thereby, contribute to the accuracy and precision of saccadic eye movements.


Neuroscience | 2006

Dynamic changes in orbitofrontal neuronal activity in rats during opiate administration and withdrawal

Ninglei Sun; Yingrui Li; Shaowen Tian; Yanlin Lei; J. Zheng; Jianzhen Yang; Nan Sui; G. Pei; Fraser A.W. Wilson; Yuanye Ma; Hao Lei; Xintian Hu

The orbitofrontal cortex is involved in the reinforcing effects of drugs of abuse. However, how the dynamic activity in OFC changes during opiate administration and withdrawal period has not been investigated. We first tested the effects of opiates and drug craving with the conditioned place preference paradigm, using manganese-enhanced magnetic resonance imaging and traditional electroencephalograph recording techniques in rats. T1-weighted 2D MRI (4.7 T) was used after unilateral injection of MnCl(2) (200 nL, 80 mM) into the right orbitofrontal cortex. The manganese-enhanced magnetic resonance imaging data suggested that the OFC activity decreased during the opiate administration period but recovered increasingly during the withdrawal period. Also, we found decreases and increases in gamma-band (20-100 Hz) activity during the opiate administration and withdrawal period, respectively. Our results showed that orbitofrontal cortex activity decreased during morphine administration and then went up progressively over several days during withdrawal. The time course of the recovery of orbitofrontal activity from inhibition during the withdrawal period may be related to the experience of drug craving.


Neuroscience Letters | 2005

Effects of extremely low-frequency electromagnetic fields on morphine-induced conditioned place preferences in rats

Yanlin Lei; Tianyue Liu; Fraser A.W. Wilson; Dongming Zhou; Yuanye Ma; Xintian Hu

In the present study, we examined the effects of extremely low-frequency (ELF) electromagnetic fields on morphine-induced conditioned place preferences in rats. During the conditioning phase (12 days), three groups of rats were placed in a sensory cue-defined environment paired with morphine (10mg/kg, i.p.) following exposure to either 20 Hz (1.80 mT) or 50 Hz (2.20 mT) or sham electromagnetic fields for 60 min/day, respectively, and were placed in another sensory cue-defined environment paired with physiological saline (1 ml/kg, i.p.) without exposure to electromagnetic fields. After finishing 12 days of conditioning, preference tests for the morphine-paired place were performed during a 10-day withdrawal period. The exposure to electromagnetic fields substantially potentiated morphine-induced place preferences in rodents, suggesting that ELF electromagnetic fields can increase the propensity for morphine-induced conditioned behaviors.

Collaboration


Dive into the Xintian Hu's collaboration.

Top Co-Authors

Avatar

Yuanye Ma

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Rizak

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Zhengbo Wang

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Shangchuan Yang

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Jianhong Wang

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Dongdong Qin

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Lin Xu

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Feng

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Hao Li

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Jiali Li

Kunming Institute of Zoology

View shared research outputs
Researchain Logo
Decentralizing Knowledge