Xinxiang Peng
South China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xinxiang Peng.
Physiologia Plantarum | 2007
Yan Zhen; Jin-Liang Qi; Si-Si Wang; Jing Su; Guo-Hua Xu; Ming-Sheng Zhang; Lv Miao; Xinxiang Peng; Dacheng Tian; Yong-Hua Yang
Phytotoxic aluminum (Al) is a limiting factor for crop production on acid soils. The molecular mechanism, however, underlying Al toxicity and responses in plants is still not well understood. We report here the characterization of comparative proteome of aluminum-stress-responsive proteins in a known Al-resistant soybean cultivar, Baxi 10 (BX10). To investigate time-dependent responses, 1-week-old soybean seedlings were exposed to 50 microM AlCl3 for 24, 48 and 72 h, and total proteins extracted from roots were separated by two-dimensional electrophoresis. More than 1200 root proteins of the soybean BX10 seedling were reproducibly resolved on the gels. A total of 39 differentially expressed spots in abundance were identified by mass spectrometry, with 21 upregulated, 13 newly induced and 5 downregulated. The heat shock protein, glutathione S-transferase, chalcone-related synthetase, GTP-binding protein and ABC transporter ATP-binding protein were previously detected at the transcriptional or translational level in other plants. Other proteins, identified in this study, are new Al-induced proteins. Soybean BX10 roots under aluminum stress could be characterized by the cellular activities involved in stress/defense, signal transduction, transport, protein folding, gene regulation, and primary metabolisms, which are critical for plant survival under Al toxicity. This present study expands our understanding of differentially expressed proteins associated with aluminum stress on soybean BX10.
Journal of Experimental Botany | 2011
Guohui Zhu; Nenghui Ye; Jianchang Yang; Xinxiang Peng; Jianhua Zhang
Later-flowering spikelets in a rice panicle, referred to as the inferior spikelets, are usually poorly filled and often limit the yield potential of some rice cultivars. The physiological and molecular mechanism for such poor grain filling remains unclear. In this study the differentially expressed genes in starch synthesis and hormone signalling between inferior and superior spikelets were comprehensively analysed and their relationships with grain filling was investigated. DNA microarray and real-time PCR analysis revealed that a group of starch metabolism-related genes showed enhanced expression profiles and had higher transcript levels in superior spikelets than in inferior ones at the early and middle grain-filling stages. Expression of the abscisic acid (ABA) synthesis genes, 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED5, and the ethylene synthesis genes, 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1) and ACO3, declined with development of the caryopses. Meanwhile, if compared with inferior spikelets, expression of these genes in superior spikelets decreased faster and had lower transcript profiles, especially for ethylene. ABA concentration and ethylene evolution rate showed similar trends to their gene expression. Exogenous supply of ABA reduced the sucrose synthase (SUS) mRNA level and its enzyme activity in detached rice grains, while exogenously supplied ethephon (an ethylene-releasing reagent) suppressed the expression of most starch synthesis genes; that is, SUS, ADP-glucose pyrophosphorylase (AGPase), and soluble starch synthase (SSS), and down-regulated their enzyme activities. In summary, it is concluded that the relatively high concentrations of ethylene and ABA in inferior spikelets suppress the expression of starch synthesis genes and their enzyme activities and consequently lead to a low grain-filling rate.
Molecular & Cellular Proteomics | 2012
Qiaosong Yang; Jun-Hua Wu; Chunyu Li; Yuerong Wei; Ou Sheng; Chunhua Hu; Ruibin Kuang; Yong-Hong Huang; Xinxiang Peng; James A. McCardle; Wei Chen; Yong Yang; Jocelyn K. C. Rose; Sheng Zhang; Ganjun Yi
Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis.
Journal of Experimental Botany | 2009
Huawei Xu; Jianjun Zhang; Jiwu Zeng; Linrong Jiang; Ee Liu; Changlian Peng; Zheng-Hui He; Xinxiang Peng
Photorespiration is one of the most intensively studied topics in plant biology. While a number of mutants deficient in photorespiratory enzymes have been identified and characterized for their physiological functions, efforts on glycolate oxidase (GLO; EC 1.1.3.15) have not been so successful. This is a report about the generation of transgenic rice (Oryza sativa L.) plants carrying a GLO antisense gene driven by an estradiol-inducible promoter, which allowed for controllable suppressions of GLO and its detailed functional analyses. The GLO-suppressed plants showed typical photorespiration-deficient phenotypes. More intriguingly, it was found that a positive and linear correlation existed between GLO activities and the net photosynthetic rates (P(N)), and photoinhibition subsequently occurred once P(N) reduction surpassed 60%, indicating GLO can exert a strong regulation over photosynthesis. Various expression analyses identified that Rubisco activase was transcriptionally suppressed in the GLO-suppressed plants, consistent with the decreased Rubisco activation states. While the substrate glycolate accumulated substantially, few changes were observed for the product glyoxylate, and for some other downstream metabolites or genes as well in the transgenic plants. Further analyses revealed that isocitrate lyase and malate synthase, two key enzymes in the glyoxylate cycle, were highly up-regulated under GLO deficiency. Taken together, the results suggest that GLO is a typical photorespiratory enzyme and that it can exert a strong regulation over photosynthesis, possibly through a feed-back inhibition on Rubisco activase, and that the glyoxylate cycle may be partially activated to compensate for the photorespiratory glyoxylate when GLO is suppressed in rice.
Plant Physiology | 2005
Xuewen Hou; Hongyun Tong; Jessie Selby; Jane DeWitt; Xinxiang Peng; Zheng-Hui He
The cell wall-associated receptor kinase (WAK) and WAK-like kinase (WAKL) gene family members are good candidates for physical linkers that signal between the cell wall and the cytoplasmic compartment. Previous studies have suggested that while some WAK/WAKL members play a role in bacterial pathogen and heavy-metal aluminum responses, others are involved in cell elongation and plant development. Here, we report a functional role for the WAKL4 gene in Arabidopsis (Arabidopsis thaliana) mineral responses. Confocal microscopic studies localized WAKL4-green fluorescent protein fusion proteins on the cell surfaces suggesting that, like other WAK/WAKL proteins, WAKL4 protein is associated with the cell wall. Histochemical analyses of the WAKL4 promoter fused with the β-glucuronidase reporter gene have shown that WAKL4 expression is induced by Na+, K+, Cu2+, Ni2+, and Zn2+. A transgenic line with a T-DNA insertion at 40-bp upstream of the WAKL4 start codon was characterized. While the T-DNA insertion had little effect on the WAKL4 transcript levels under normal growth conditions, it significantly altered the expression patterns of WAKL4 under various conditions of mineral nutrients. Semiquantitative and quantitative reverse transcription-PCR analyses showed that the promoter impairment abolished WAKL4-induced expression by Na+, K+, Cu2+, and Zn2+, but not by Ni2+. Whereas the WAKL4 promoter impairment resulted in hypersensitivity to K+, Na+, Cu2+, and Zn2+, it conferred a better tolerance to toxic levels of the Ni2+ heavy metal. WAKL4 was required for the up-regulation of zinc transporter genes during zinc deficiency, and the WAKL4 T-DNA insertion resulted in a reduction of Zn2+ accumulation in shoots. A WAKL4-green fluorescent protein fusion gene driven by either the WAKL4 native promoter or the 35S constitutive promoter complemented the phenotypes. Our results suggest versatile roles for WAKL4 in Arabidopsis mineral nutrition responses.
Journal of Experimental Botany | 2010
Le Yu; Jingzhe Jiang; Chan Zhang; Linrong Jiang; Nenghui Ye; Yusheng Lu; Guozheng Yang; Ee Liu; Changlian Peng; Zheng-Hui He; Xinxiang Peng
Oxalate is widely distributed in the plant kingdom. While excess oxalate in food crops is detrimental to animal and human health, it may play various functional roles in plants, particularly for coping with environmental stresses. Understanding its biosynthetic mechanism in plants, therefore, becomes increasingly important both theoretically and practically. However, it is still a matter of debate as to what precursor and pathway are ultimately used for oxalate biosynthesis in plants. In this study, both physiological and molecular approaches were applied to address these questions. First, it was observed that when glycolate or glyoxylate was fed into detached leaves, both organic acids were equally effective in stimulating oxalate accumulation. In addition, the stimulation could be completely inhibited by cysteine, a glyoxylate scavenger that forms cysteine-glyoxylate adducts. To verify the role of glyoxylate further, various transgenic plants were generated, in which several genes involved in glyoxylate metabolism [i.e. SGAT (serine-glyoxylate aminotransferase), GGAT (glutamate-glyoxylate aminotransferase), HPR (hydroxypyruvate reductase), ICL (isocitrate lyase)], were transcriptionally regulated through RNAi or over-expression. Analyses on these transgenic plants consistently revealed that glyoxylate acted as an efficient precursor for oxalate biosynthesis in rice. Unexpectedly, it was found that oxalate accumulation was not correlated with photorespiration, even though this pathway is known to be a major source of glyoxylate. Further, when GLDH (L-galactono-1,4-lactone dehydrogenase), a key enzyme gene for ascorbate biosynthesis, was down-regulated, the oxalate abundance remained constant, despite ascorbate having been largely reduced as expected in these transgenic plants. Taken together, our results strongly suggest that glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis, and that oxalate accumulation and regulation do not necessarily depend on photorespiration, possibly due to the occurrence of the anaplerotic reaction that may compensate for glyoxylate formation in rice.
Physiologia Plantarum | 2014
Yusheng Lu; Yong Li; Qiaosong Yang; Zhisheng Zhang; Yan Chen; Sheng Zhang; Xinxiang Peng
Glycolate oxidase (GLO) is a key enzyme for photorespiration in plants. Previous studies have demonstrated that suppression of GLO causes photosynthetic inhibition, and the accumulated glycolate with the deactivated Rubisco is likely involved in the regulation. Using isolated Rubisco and chloroplasts, it has been found that only glyoxylate can effectively inactivate Rubisco and meanwhile inhibit photosynthesis, but little in vivo evidence has been acquired and reported. In this study, we have generated the transgenic rice (Oryza sativa) plants with GLO being constitutively silenced, and conducted the physiological and biochemical analyses on these plants to explore the regulatory mechanism. When GLO was downregulated, the net photosynthetic rate (Pn) was reduced and the plant growth was correspondingly stunted. Surprisingly, glyoxylate, as a product of the GLO catalysis, was accumulated in response to the GLO suppression, like its substrate glycolate. Furthermore, the glyoxylate content was found to be inversely proportional to the Pn while the Pn is directly proportional to the Rubisco activation state in the GLO-suppressed plants. A mathematical fitting equation using least square method also demonstrated that the Rubisco activation state was inversely proportional to the glyoxylate content. Despite that the further analyses we have conducted failed to reveal how glyoxylate was accumulated in response to the GLO suppression, the current results do strongly suggest that there may exist an unidentified, alternative pathway to produce glyoxylate, and that the accumulated glyoxylate inhibits photosynthesis by deactivating Rubisco, and causes the photorespiratory phenotype in the GLO-suppressed rice plants.
Journal of Plant Physiology | 2013
Yuanli Wu; Ganjun Yi; Xinxiang Peng; Bingzhi Huang; Ee Liu; Jianjun Zhang
Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plants innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g⁻¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.
PLOS ONE | 2011
Qiaosong Yang; Han He; Heying Li; Hua Tian; Jianjun Zhang; Liguang Zhai; Jiandong Chen; Hong Wu; Ganjun Yi; Zheng-Hui He; Xinxiang Peng
NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice.
European Journal of Plant Pathology | 2010
Y. L. Wu; Ganjun Yi; Xinxiang Peng
In order to accelerate breeding and selection for disease resistance to Fusarium wilt, it is important to develop bioassays which can differentiate between resistant and susceptible cultivars efficiently. Currently, the most commonly used early bioassay for screening Musa genotypes against Fusarium oxysporum f. sp. cubense (Foc) is a pot system, followed by a hydroponic system. This paper investigated the utility of in vitro inoculation of rooted banana plantlets grown on modified medium as a reliable and rapid bioassay for resistance to Foc. Using a scale of 0 to 6 for disease severity measurement, the mean final disease severities of cultivars expressing different levels of disease reaction were significantly different (P ≤ 0.05). Twenty-four days after inoculation with Foc tropical race 4 at 106 conidia ml−1, the plantlets of two susceptible cultivars had higher final disease severities than that of four resistant cultivars. Compared with ‘Guangfen No.1’, ‘Brazil Xiangjiao’ is highly susceptible to tropical race 4 and its mean final disease severity was the highest (5.27). The plantlets of moderately resistant cultivar ‘Formosana’ had a mean final disease severity (3.53) lower than that of ‘Guangfen No.1’ (4.33) but higher than that of resistant cultivars: ‘Nongke No.1’, GCTCV-119, and ‘Dongguan Dajiao’ (1.87, 1.73, and1.53, respectively). Promising resistant clones acquired through non-conventional breeding techniques such as in vitro selection, genetic transformation, and protoplast fusion could be screened by the in vitro bioassay directly. Since there is no acclimatization stage for plantlets used in the bioassay, it helps to improve banana breeding efficiency.