Xinyi Jiang
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xinyi Jiang.
Journal of Materials Chemistry B | 2015
Michael Keeney; Xinyi Jiang; M. Yamane; Mel S. Lee; Stuart B. Goodman; Fan Yang
Since its introduction in the early 1990s, layer-by-layer (LbL) self-assembly of films has been widely used in the fields of nanoelectronics, optics, sensors, surface coatings, and controlled drug delivery. The growth of this industry is propelled by the ease of film manufacture, low cost, mild assembly conditions, precise control of coating thickness, and versatility of coating materials. Despite the wealth of research on LbL for biomolecule delivery, clinical translation has been limited and slow. This review provides an overview of methods and mechanisms of loading biomolecules within LbL films and achieving controlled release. In particular, this review highlights recent advances in the development of LbL coatings for the delivery of different types of biomolecules including proteins, polypeptides, DNA, particles and viruses. To address the need for co-delivery of multiple types of biomolecules at different timing, we also review recent advances in incorporating compartmentalization into LbL assembly. Existing obstacles to clinical translation of LbL technologies and enabling technologies for future directions are also discussed.
Biomaterials | 2013
Michael Keeney; Heather Waters; Katherine Barcay; Xinyi Jiang; Zhenyu Yao; Jukka Pajarinen; Kensuke Egashira; Stuart B. Goodman; Fan Yang
Total joint replacement (TJR) is a common and effective surgical procedure for hip or knee joint reconstruction. However, the production of wear particles is inevitable for all TJRs, which activates macrophages and initiates an inflammatory cascade often resulting in bone loss, prosthetic loosening and eventual TJR failure. Macrophage Chemoattractant Protein-1 (MCP-1) is one of the most potent cytokines responsible for macrophage cell recruitment, and previous studies suggest that mutant MCP-1 proteins such as 7ND may be used as a decoy drug to block the receptor and reduce inflammatory cell recruitment. Here we report the development of a biodegradable, layer-by-layer (LBL) coating platform that allows efficient loading and controlled release of 7ND proteins from the surface of orthopedic implants using as few as 14 layers. Scanning electron microscopy and fluorescence imaging confirmed effective coating using the LBL procedure on titanium rods. 7ND protein loading concentration and release kinetics can be modulated by varying the polyelectrolytes of choice, the polymer chemistry, the pH of the polyelectrolyte solution, and the degradation rate of the LBL assembly. The released 7ND from LBL coating retained its bioactivity and effectively reduced macrophage migration towards MCP-1. Finally, the LBL coating remained intact following a femoral rod implantation procedure as determined by immunostaining of the 7ND coating. The LBL platform reported herein may be applied for in situ controlled release of 7ND protein from orthopedic implants, to reduce wear particle-induced inflammatory responses in an effort to prolong the lifetime of implants.
Journal of Orthopaedic Research | 2016
Xinyi Jiang; Taishi Sato; Zhenyu Yao; Michael Keeney; Jukka Pajarinen; Tzu-Hua Lin; Florence Loi; Kensuke Egashira; Stuart B. Goodman; Fan Yang
Total joint replacement (TJR) has been widely used as a standard treatment for late‐stage arthritis. One challenge for long‐term efficacy of TJR is the generation of ultra‐high molecular weight polyethylene wear particles from the implant surface that activates an inflammatory cascade which may lead to bone loss, prosthetic loosening and eventual failure of the procedure. Here, we investigate the efficacy of local administration of mutant CCL2 proteins, such as 7ND, on reducing wear particle‐induced inflammation and osteolysis in vivo using a mouse calvarial model. Mice were treated with local injection of 7ND or phosphate buffered saline (PBS) every other day for up to 14 days. Wear particle‐induced osteolysis and the effects of 7ND treatment were evaluated using micro‐CT, histology, and immunofluorescence staining. Compared with the PBS control, 7ND treatment significantly decreased wear particle‐induced osteolysis, which led to a higher bone volume fraction and bone mineral density. Furthermore, immunofluorescence staining showed 7ND treatment decreased the number of recruited inflammatory cells and osteoclasts. Together, our results support the feasibility of local delivery of 7ND for mitigating wear particle‐induced inflammation and osteolysis, which may offer a promising strategy for extending the life time of TJRs.
Journal of Biomedical Materials Research Part A | 2016
Taishi Sato; Jukka Pajarinen; Anthony W. Behn; Xinyi Jiang; Tzu-Hua Lin; Florence Loi; Zhenyu Yao; Kensuke Egashira; Fan Yang; Stuart B. Goodman
Modulation of macrophage polarization and prevention of CCL2-induced macrophage chemotaxis are emerging strategies to reduce wear particle induced osteolysis and aseptic total joint replacement loosening. In this study, the effect of continuous IL-4 delivery or bioactive implant coating that constitutively releases a protein inhibitor of CCL2 signaling (7ND) on particle induced osteolysis were studied in the murine continuous femoral intramedullary particle infusion model. Polyethylene particles with or without IL-4 were infused into mouse distal femurs implanted with hollow titanium rods using subcutaneous infusion pumps. In another experimental group, particles were infused into the femur through a 7ND coated rod. After 4 weeks, fixation of the implant was assessed using a pullout test. The volume of trabecular bone and the geometry of the local cortical bone were assessed by µCT and the corresponding structural properties of the cortical bone determined by torsional testing. Continuous IL-4 delivery led to increased trabecular bone volume as well as enhanced local bone geometry and structural properties, while 7ND implant coating did not have effect on these parameters. The results suggest that local IL-4 treatment is a promising strategy to mitigate wear particle induced osteolysis.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Xinyi Jiang; Sergio Fitch; Christine Wang; Christy Wilson; Jianfeng Li; Gerald A. Grant; Fan Yang
Significance Current treatment for glioblastoma multiforme (GBM) fails to address its highly infiltrative nature; treatment often leaves behind microscopic neoplastic satellites, resulting in eventual tumor recurrence. Here we report polymeric nanoparticle-engineered human adipose-derived stem cells (hADSCs) overexpressing the cancer-specific TNF-related apoptosis-inducing ligand for targeting and eradicating glioblastoma cells. Engineered hADSCs exhibited long-range directional migration toward tumor in patient-derived GBM orthotropic xenografts and showed significant inhibition of tumor growth and extension of animal survival. Repetitive injection further prolonged animal survival compared with single injection. Together, our data suggest that nanoparticle-engineered hADSCs exhibit the therapeutically relevant behavior of “seek-and-destroy” tumortropic migration, and may offer a promising therapy for substantial enhancement of GBM treatment. Glioblastoma multiforme (GBM) is one of the most intractable of human cancers, principally because of the highly infiltrative nature of these neoplasms. Tracking and eradicating infiltrating GBM cells and tumor microsatellites is of utmost importance for the treatment of this devastating disease, yet effective strategies remain elusive. Here we report polymeric nanoparticle-engineered human adipose-derived stem cells (hADSCs) overexpressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as drug-delivery vehicles for targeting and eradicating GBM cells in vivo. Our results showed that polymeric nanoparticle-mediated transfection led to robust up-regulation of TRAIL in hADSCs, and that TRAIL-expressing hADSCs induced tumor-specific apoptosis. When transplanted in a mouse intracranial xenograft model of patient-derived glioblastoma cells, hADSCs exhibited long-range directional migration and infiltration toward GBM tumor. Importantly, TRAIL-overexpressing hADSCs inhibited GBM growth, extended survival, and reduced the occurrence of microsatellites. Repetitive injection of TRAIL-overexpressing hADSCs significantly prolonged animal survival compared with single injection of these cells. Taken together, our data suggest that nanoparticle-engineered TRAIL-expressing hADSCs exhibit the therapeutically relevant behavior of “seek-and-destroy” tumortropic migration and could be a promising therapeutic approach to improve the treatment outcomes of patients with malignant brain tumors.
Journal of Biomedical Materials Research Part A | 2017
Christine Wang; Xinming Tong; Xinyi Jiang; Fan Yang
Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with median survival of 12 months. To improve clinical outcomes, it is critical to develop in vitro models that support GBM proliferation and invasion for deciphering tumor progression and screening drug candidates. A key hallmark of GBM cells is their extreme invasiveness, a process mediated by matrix metalloproteinase (MMP)-mediated degradation of the extracellular matrix. We recently reported the development of a MMP-degradable, poly(ethylene-glycol)-based hydrogel platform for culturing GBM cells. In the present study, we modulated the percentage of MMP-degradable crosslinks in 3D hydrogels to analyze the effects of MMP-degradability on GBM fates. Using an immortalized GBM cell line (U87) as a model cell type, our results showed that MMP-degradability was not required for supporting GBM proliferation. All hydrogel formulations supported robust GBM proliferation, up to 10 fold after 14 days. However, MMP-degradability was essential for facilitating tumor spreading, and 50% MMP-degradable hydrogels were sufficient to enable both robust tumor cell proliferation and spreading in 3D. The findings of this study highlight the importance of modulating MMP-degradability in engineering 3D in vitro brain cancer models and may be applied for engineering in vitro models for other cancer types.
Biomaterials | 2017
Akira Nabeshima; Jukka Pajarinen; Tzu-Hua Lin; Xinyi Jiang; Emmanuel Gibon; Luis A. Córdova; Florence Loi; Laura Lu; Eemeli Jämsen; Kensuke Egashira; Fan Yang; Zhenyu Yao; Stuart B. Goodman
Wear particle-induced osteolysis limits the long-term survivorship of total joint replacement (TJR). Monocyte/macrophages are the key cells of this adverse reaction. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is the most important chemokine regulating trafficking of monocyte/macrophages in particle-induced inflammation. 7ND recombinant protein is a mutant of CCL2 that inhibits CCL2 signaling. We have recently developed a layer-by-layer (LBL) coating platform on implant surfaces that can release biologically active 7ND. In this study, we investigated the effect of 7ND on wear particle-induced bone loss using the murine continuous polyethylene (PE) particle infusion model with 7ND coating of a titanium rod as a local drug delivery device. PE particles were infused into hollow titanium rods with or without 7ND coating implanted in the distal femur for 4 weeks. Specific groups were also injected with RAW 264.7 as the reporter macrophages. Wear particle-induced bone loss and the effects of 7ND were evaluated by microCT, immunohistochemical staining, and bioluminescence imaging. Local delivery of 7ND using the LBL coating decreased systemic macrophage recruitment, the number of osteoclasts and wear particle-induced bone loss. The development of a novel orthopaedic implant coating with anti-CCL2 protein may be a promising strategy to mitigate peri-prosthetic osteolysis.
Journal of Biomedical Materials Research Part A | 2016
Li-Hsin Han; Bogdan Conrad; Michael T. Chung; Lorenzo Deveza; Xinyi Jiang; Andrew Y. Wang; Manish J. Butte; Michael T. Longaker; Derrick C. Wan; Fan Yang
Stem cell-based therapies hold great promise for enhancing tissue regeneration. However, the majority of cells die shortly after transplantation, which greatly diminishes the efficacy of stem cell-based therapies. Poor cell engraftment and survival remain a major bottleneck to fully exploiting the power of stem cells for regenerative medicine. Biomaterials such as hydrogels can serve as artificial matrices to protect cells during delivery and guide desirable cell fates. However, conventional hydrogels often lack macroporosity, which restricts cell proliferation and delays matrix deposition. Here we report the use of injectable, macroporous microribbon (μRB) hydrogels as stem cell carriers for bone repair, which supports direct cell encapsulation into a macroporous scaffold with rapid spreading. When transplanted in a critical-sized, mouse cranial defect model, μRB-based hydrogels significantly enhanced the survival of transplanted adipose-derived stromal cells (ADSCs) (81%) and enabled up to three-fold cell proliferation after 7 days. In contrast, conventional hydrogels only led to 27% cell survival, which continued to decrease over time. MicroCT imaging showed μRBs enhanced and accelerated mineralized bone repair compared to hydrogels (61% vs. 34% by week 6), and stem cells were required for bone repair to occur. These results suggest that paracrine signaling of transplanted stem cells are responsible for the observed bone repair, and enhancing cell survival and proliferation using μRBs further promoted the paracrine-signaling effects of ADSCs for stimulating endogenous bone repair. We envision μRB-based scaffolds can be broadly useful as a novel scaffold for enhancing stem cell survival and regeneration of other tissue types.
Journal of Biomedical Materials Research Part A | 2016
Li-Hsin Han; Bogdan Conrad; Michael T. Chung; Lorenzo Deveza; Xinyi Jiang; Andrew Y. Wang; Manish J. Butte; Michael T. Longaker; Derrick C. Wan; Fan Yang
Stem cell-based therapies hold great promise for enhancing tissue regeneration. However, the majority of cells die shortly after transplantation, which greatly diminishes the efficacy of stem cell-based therapies. Poor cell engraftment and survival remain a major bottleneck to fully exploiting the power of stem cells for regenerative medicine. Biomaterials such as hydrogels can serve as artificial matrices to protect cells during delivery and guide desirable cell fates. However, conventional hydrogels often lack macroporosity, which restricts cell proliferation and delays matrix deposition. Here we report the use of injectable, macroporous microribbon (μRB) hydrogels as stem cell carriers for bone repair, which supports direct cell encapsulation into a macroporous scaffold with rapid spreading. When transplanted in a critical-sized, mouse cranial defect model, μRB-based hydrogels significantly enhanced the survival of transplanted adipose-derived stromal cells (ADSCs) (81%) and enabled up to three-fold cell proliferation after 7 days. In contrast, conventional hydrogels only led to 27% cell survival, which continued to decrease over time. MicroCT imaging showed μRBs enhanced and accelerated mineralized bone repair compared to hydrogels (61% vs. 34% by week 6), and stem cells were required for bone repair to occur. These results suggest that paracrine signaling of transplanted stem cells are responsible for the observed bone repair, and enhancing cell survival and proliferation using μRBs further promoted the paracrine-signaling effects of ADSCs for stimulating endogenous bone repair. We envision μRB-based scaffolds can be broadly useful as a novel scaffold for enhancing stem cell survival and regeneration of other tissue types.
Theranostics | 2018
Xinyi Jiang; Christine Wang; Sergio Fitch; Fan Yang
Hypoxia, a hallmark of malignant tumors, often correlates with increasing tumor aggressiveness and poor treatment outcomes. Due to a lack of vasculature, effective drug delivery to hypoxic tumor regions remains challenging. Signaling through the chemokine SDF-1α and its receptor CXCR4 plays a critical role in the homing of stem cells to ischemia for potential use as drug-delivery vehicles. To harness this mechanism for targeting tumor hypoxia, we developed polymeric nanoparticle-induced CXCR4-overexpressing human adipose-derived stem cells (hADSCs). Using glioblastoma multiforme (GBM) as a model tumor, we evaluated the ability of CXCR4-overexpressing hADSCs to target tumor hypoxia in vitro using a 2D migration assay and a 3D collagen hydrogel model. Compared to untransfected hADSCs, CXCR4-overexpressing hADSCs showed enhanced migration in response to hypoxia and penetrated the hypoxic core within tumor spheres. When injected in the contralateral brain in a mouse intracranial GBM xenograft, CXCR4-overexpressing hADSCs exhibited long-range migration toward GBM and preferentially penetrated the hypoxic tumor core. Intravenous injection also led to effective targeting of tumor hypoxia in a subcutaneous tumor model. Together, these results validate polymeric nanoparticle-induced CXCR4-overexpressing hADSCs as a potent cellular vehicle for targeting tumor hypoxia, which may be broadly useful for enhancing drug delivery to various cancer types.