Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinying Su is active.

Publication


Featured researches published by Xinying Su.


Clinical Cancer Research | 2013

FGFR2 Gene Amplification in Gastric Cancer Predicts Sensitivity to the Selective FGFR Inhibitor AZD4547

Liang Xie; Xinying Su; Lin Zhang; Xiaolu Yin; Lili Tang; Xiuhua Zhang; Yanping Xu; Zeren Gao; Kunji Liu; Minhua Zhou; Beirong Gao; Danping Shen; Lianhai Zhang; Jiafu Ji; Paul R. Gavine; Jingchuan Zhang; Elaine Kilgour; Xiaolin Zhang; Qunsheng Ji

Purpose: FGFR gene aberrations are associated with tumor growth and survival. We explored the role of FGFR2 amplification in gastric cancer and the therapeutic potential of AZD4547, a potent and selective ATP-competitive receptor tyrosine kinase inhibitor of fibroblast growth factor receptor (FGFR)1–3, in patients with FGFR2-amplified gastric cancer. Experimental Design: Array-comparative genomic hybridization and FISH were used to identify FGFR2 amplification in gastric cancer patient tumor samples. The effects of FGFR2 modulation were investigated in gastric cancer cells with FGFR2 amplification and in patient-derived gastric cancer xenograft (PDGCX) models using two approaches: inhibition with AZD4547 and short hairpin RNA (shRNA) knockdown of FGFR2. Results: Amplification of the FGFR2 gene was identified in a subset of Chinese and Caucasian patients with gastric cancer. Gastric cancer cell lines SNU-16 and KATOIII, carrying the amplified FGFR2 gene, were extremely sensitive to AZD4547 in vitro with GI50 values of 3 and 5 nmol/L, respectively. AZD4547 effectively inhibited phosphorylation of FGFR2 and its downstream signaling molecules and induced apoptosis in SNU-16 cells. Furthermore, inhibition of FGFR2 signaling by AZD4547 resulted in significant dose-dependent tumor growth inhibition in FGFR2-amplified xenograft (SNU-16) and PDGCX models (SGC083) but not in nonamplified models. shRNA knockdown of FGFR2 similarly inhibited tumor growth in vitro and in vivo. Finally, compared with monotherapy, we showed enhancement of in vivo antitumor efficacy using AZD4547 in combination with chemotherapeutic agents. Conclusion: FGFR2 pathway activation is required for driving growth and survival of gastric cancer carrying FGFR2 gene amplification both in vitro and in vivo. Our data support therapeutic intervention with FGFR inhibitors, such as AZD4547, in patients with gastric cancer carrying FGFR2 gene amplification. Clin Cancer Res; 19(9); 2572–83. ©2013 AACR.


Clinical Cancer Research | 2012

Translating the Therapeutic Potential of AZD4547 in FGFR1-Amplified Non–Small Cell Lung Cancer through the Use of Patient-Derived Tumor Xenograft Models

Jingchuan Zhang; Lin Zhang; Xinying Su; Ming Li; Liang Xie; Florian Malchers; Shuqiong Fan; Xiaolu Yin; Yanping Xu; Kunji Liu; Zhengwei Dong; Guanshan Zhu; Ziliang Qian; Lili Tang; Ping Zhan; Qunsheng Ji; Elaine Kilgour; Paul D. Smith; A. Nigel Brooks; Roman K. Thomas; Paul R. Gavine

Purpose: To investigate the incidence of FGFR1 amplification in Chinese non–small cell lung cancer (NSCLC) and to preclinically test the hypothesis that the novel, potent, and selective fibroblast growth factor receptor (FGFR) small-molecule inhibitor AZD4547 will deliver potent antitumor activity in NSCLC FGFR1–amplified patient-derived tumor xenograft (PDTX) models. Experimental Design: A range of assays was used to assess the translational relevance of FGFR1 amplification and AZD4547 treatment including in vitro lung cell line panel screening and pharmacodynamic (PD) analysis, FGFR1 FISH tissue microarray (TMA) analysis of Chinese NSCLC (n = 127), and, importantly, antitumor efficacy testing and PD analysis of lung PDTX models using AZD4547. Results: The incidence of FGFR1 amplification within Chinese patient NSCLC tumors was 12.5% of squamous origin (6 of 48) and 7% of adenocarcinoma (5 of 76). AZD4547 displayed a highly selective profile across a lung cell line panel, potently inhibiting cell growth only in those lines harboring amplified FGFR1 (GI50 = 0.003–0.111 μmol/L). AZD4547 induced potent tumor stasis or regressive effects in four of five FGFR1-amplified squamous NSCLC PDTX models. Pharmacodynamic modulation was observed in vivo, and antitumor efficacy correlated well with FGFR1 FISH score and protein expression level. Conclusions: This study provides novel epidemiologic data through identification of FGFR1 gene amplification in Chinese NSCLC specimens (particularly squamous) and, importantly, extends the clinical significance of this finding by using multiple FGFR1-amplified squamous lung cancer PDTX models to show tumor stasis or regression effects using a specific FGFR inhibitor (AZD4547). Thus, the translational science presented here provides a strong rationale for investigation of AZD4547 as a therapeutic option for patients with squamous NSCLC tumors harboring amplification of FGFR1. Clin Cancer Res; 18(24); 6658–67. ©2012 AACR.


Journal of Translational Medicine | 2013

Establishment of patient-derived non-small cell lung cancer xenograft models with genetic aberrations within EGFR, KRAS and FGFR1: useful tools for preclinical studies of targeted therapies

Zhang X; Jingchuan Zhang; Ming‐ming Li; Xiao-Sui Huang; Xue-Ning Yang; Wen-Zhao Zhong; Liang Xie; Lin Zhang; Minhua Zhou; Paul R. Gavine; Xinying Su; Li Zheng; Guanshan Zhu; Ping Zhan; Qunsheng Ji; Yi-Long Wu

BackgroundPatient-derived tumor xenograft models have been established and increasingly used for preclinical studies of targeted therapies in recent years. However, patient-derived non-small cell lung cancer (NSCLC) xenograft mouse models are relatively few in number and are limited in their degree of genetic characterization and validation. In this study, we aimed to establish a variety of patient-derived NSCLC models and characterize these for common genetic aberrations to provide more informative models for preclinical drug efficacy testing.MethodsNSCLC tissues from thirty-one patients were collected and implanted into immunodeficient mice. Established xenograft models were characterized for common genetic aberrations, including detection of gene mutations within EGFR and KRAS, and genetic amplification of FGFR1 and cMET. Finally, gefitinib anti-tumor efficacy was tested in these patient-derived NSCLC xenograft models.ResultsTen passable patient-derived NSCLC xenograft models were established by implantation of NSCLC specimens of thirty-one patients into immunodeficient mice. Genetic aberrations were detected in six of the models, including one model with an EGFR activating mutation (Exon19 Del), one model with KRAS mutation, one model with both KRAS mutation and cMET gene amplification, and three models with FGFR1 amplification. Anti-tumor efficacy studies using gefitinib demonstrated that the EGFR activating mutation model had superior sensitivity and that the KRAS mutation models were resistant to gefitinib. The range of gefitinib responses in the patient-derived NSCLC xenograft models were consistent with the results reported from clinical trials. Furthermore, we observed that patient-derived NSCLC models with FGFR1 gene amplification were insensitive to gefitinib treatment.ConclusionsTen patient-derived NSCLC xenograft models were established containing a variety of genetic aberrations including EGFR activating mutation, KRAS mutation, and FGFR 1 and cMET amplification. Gefitinib anti-tumor efficacy in these patient-derived NSCLC xenografts containing EGFR and KRAS mutation was consistent with the reported results from previous clinical trials. Thus, data from our panel of patient-derived NSCLC xenograft models confirms the utility of these models in furthering our understanding of this disease and aiding the development of personalized therapies for NSCLC patients.


Molecular Oncology | 2015

Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models

Paul R. Gavine; Yongxin Ren; Lu Han; Jing Lv; Shiming Fan; Wei Zhang; Wen Xu; Yuan Jie Liu; Tianwei Zhang; Haihua Fu; Yongjuan Yu; Huiying Wang; Shirlian Xu; Feng Zhou; Xinying Su; Xiaolu Yin; Liang Xie; Linfang Wang; Weiguo Qing; Longxian Jiao; Weiguo Su; Q.May Wang

To investigate the incidence of cMET gene copy number changes and protein overexpression in Chinese gastric cancer (GC) and to preclinically test the hypothesis that the novel, potent and selective cMET small‐molecule inhibitor volitinib, will deliver potent anti‐tumor activity in cMET‐dysregulated GC patient‐derived tumor xenograft (PDX) models.


Journal of Translational Medicine | 2012

Trastuzumab anti-tumor efficacy in patient-derived esophageal squamous cell carcinoma xenograft (PDECX) mouse models.

Xianhua Wu; Jingchuan Zhang; Ruheng Zhen; Jing Lv; Li Zheng; Xinying Su; Guanshan Zhu; Paul R. Gavine; Songtao Xu; Shaohua Lu; Jun Hou; Yalan Liu; Chen Xu; Yunshan Tan; Liang Xie; Xiaolu Yin; Deming He; Qunsheng Ji; Di Ge

BackgroundTrastuzumab is currently approved for the clinical treatment of breast and gastric cancer patients with HER-2 positive tumors, but not yet for the treatment of esophageal carcinoma patients, whose tumors typically show 5 ~ 35% HER-2 gene amplification and 0 ~ 56% HER-2 protein expression. This study aimed to investigate the therapeutic efficacy of Trastuzumab in patient-derived esophageal squamous cell carcinoma xenograft (PDECX) mouse models.MethodsPDECX models were established by implanting patient esophageal squamous cell carcinoma (ESCC) tissues into immunodeficient (SCID/nude) mice. HER-2 gene copy number (GCN) and protein expression were determined in xenograft tissues and corresponding patient EC samples by FISH and IHC analysis. Trastuzumab anti-tumor efficacy was evaluated within these PDECX models (n = 8 animals/group). Furthermore, hotspot mutations of EGFR, K-ras, B-raf and PIK3CA genes were screened for in the PDECX models and their corresponding patient’s ESCC tissues. Similarity between the PDECX models and their corresponding patient’s ESCC tissue was confirmed by histology, morphology, HER-2 GCN and mutation.ResultsNone of the PDECX models (or their corresponding patient’s ESCC tissues) harbored HER-2 gene amplification. IHC staining showed HER-2 positivity (IHC 2+) in 2 PDECX models and negativity in 3 PDECX models. Significant tumor regression was observed in the Trastuzumab-treated EC044 HER-2 positive model (IHC 2+). A second HER-2 positive (IHC 2+) model, EC039, harbored a known PIK3CA mutation and showed strong activation of the AKT signaling pathway and was insensitive to Trastuzumab treatment, but could be resensitised using a combination of Trastuzumab and AKT inhibitor AZD5363. In summary, we established 5 PDECX mouse models and demonstrated tumor regression in response to Trastuzumab treatment in a HER-2 IHC 2+ model, but resistance in a HER-2 IHC 2+/PIK3CA mutated model.ConclusionsThis study demonstrates Trastuzumab-induced tumor regressions in HER-2 positive tumors, and highlights PIK3CA mutation as a potential resistance mechanism to Trastuzumab treatment in pre-clinical patient-derived EC xenograft models.


BMC Cancer | 2015

A retrospective analysis of RET translocation, gene copy number gain and expression in NSCLC patients treated with vandetanib in four randomized Phase III studies

Adam Platt; John Edward Norris Morten; Qunsheng Ji; Paul Elvin; Chris Womack; Xinying Su; Emma Donald; Neil Gray; Jessica Read; Graham Bigley; Laura Blockley; Carl John Cresswell; Angela Dale; Amanda Davies; Tianwei Zhang; Shuqiong Fan; Haihua Fu; Amanda Gladwin; Grace Harrod; James Stevens; Victoria Williams; Qingqing Ye; Li Zheng; Richard de Boer; Roy S. Herbst; Jin-Soo Lee

BackgroundTo determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment.MethodsArchival tumor samples from the ZODIAC (NCT00312377, vandetanib ± docetaxel), ZEAL (NCT00418886, vandetanib ± pemetrexed), ZEPHYR (NCT00404924, vandetanib vs placebo) and ZEST (NCT00364351, vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients.ResultsThe prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3–1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4–6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression.ConclusionsWe have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with efficacy in the RET rearrangement NSCLC subpopulation.Trial registrationRandomized Phase III clinical trials (NCT00312377, ZODIAC; NCT00418886, ZEAL; NCT00364351, ZEST; NCT00404924, ZEPHYR).


Genes, Chromosomes and Cancer | 2014

Whole genome gene copy number profiling of gastric cancer identifies PAK1 and KRAS gene amplification as therapy targets.

Ziliang Qian; Guanshan Zhu; Lili Tang; Mei Wang; Lianhai Zhang; Jiangang Fu; Chunlei Huang; Shuqiong Fan; Yun Sun; Jing Lv; Hua Dong; Beirong Gao; Xinying Su; De-Hua Yu; Jie Zang; Xiaolin Zhang; Jiafu Ji; Qunsheng Ji

Gastric cancer is the second leading cause of death from cancer worldwide, with an approximately 20% 5‐year survival rate. To identify molecular subtypes associated with the clinical prognosis, in addition to genetic aberrations for potential targeted therapeutics, we conducted a comprehensive whole‐genome analysis of 131 Chinese gastric cancer tissue specimens using whole‐genome array comparative genomic hybridization. The analyses revealed gene focal amplifications, including CTSB, PRKCI, PAK1, STARD13, KRAS, and ABCC4, in addition to ERBB2, FGFR2, and MET. The growth of PAK1‐amplified gastric cancer cells in vitro and in vivo was inhibited when the corresponding mRNA was knocked down. Furthermore, both KRAS amplification and KRAS mutation were identified in the gastric cancer specimens. KRAS amplification was associated with worse clinical outcomes, and the KRAS gene mutation predicted sensitivity to the MEK1/2 inhibitor AZD6244 in gastric cancer cell lines. In summary, amplified PAK1, as well as KRAS amplification/mutation, may represent unique opportunities for developing targeted therapeutics for the treatment of gastric cancer.


Oncotarget | 2017

PD-L1 expression and its relationship with oncogenic drivers in non-small cell lung cancer (NSCLC)

Liyan Jiang; Xinying Su; Tianwei Zhang; Xiaolu Yin; Meizhuo Zhang; Haihua Fu; Hulin Han; Yun Sun; Lili Dong; Jialin Qian; Yanhua Xu; Xuan Fu; Paul R. Gavine; Yanbin Zhou; Kun Tian; Jiaqi Huang; Dong Shen; Haiyi Jiang; Yihong Yao; Baohui Han; Yi Gu

In order to explore the potential patient population who could benefit from anti PD-1/PD-L1 mono or combination therapies, this study aimed to profile a panel of immunotherapy related biomarkers (PD-1, PD-L1, CTLA-4 and CD8) and targeted therapy biomarkers (EGFR, KRAS, ALK, ROS1 and MET) in NSCLC. Tumor samples from 297 NSCLC patients, including 156 adenocarcinomas (AD) and 129 squamous cell carcinomas (SCC), were analyzed using immunohistochemistry, immunofluorescence, sequencing and fluorescence in situ hybridization. 43.1% of NSCLC patients had PD-L1 positive staining on ≥ 5% tumor cells (TC). Furthermore, dual color immunofluorescence revealed that the majority of PD-L1/CD8 dual positive tumor infiltrating lymphocytes (TIL) had infiltrated into the tumor core. Finally, combined analysis of all eight biomarkers showed that tumor PD-L1 positivity overlapped with known alterations in NSCLC oncogenic tumor drivers in 26% of SCC and 76% of AD samples. Our illustration of the eight biomarkers’ overlap provides an intuitive overview of NSCLC for personalized therapeutic strategies using anti-PD-1/PD-L1 immune therapies, either as single agents, or in combination with targeted therapies. For the first time, we also report that PD-L1 and CD8 dual positive TILs are predominantly located within the tumor core.


Oncogenesis | 2014

The essential role of TNIK gene amplification in gastric cancer growth.

Duonan Yu; Xuefei Zhang; Hua Wang; Lianhai Zhang; Hao Chen; Hu M; Zhengwei Dong; Guanshan Zhu; Ziliang Qian; Fan J; Xinying Su; Youchun Xu; Lijun Zheng; Hua Dong; Xiaolu Yin; Qunsheng Ji; Jiafu Ji

Traf2- and Nck-interacting kinase (TNIK) is one of the germinal center kinase family members involved in cytoskeleton organization and neuronal dendrite extension. Emerging evidence supports that TNIK is essential for activation of WNT signaling pathway in colon cancer growth. To search for novel genetic aberrations that drive carcinogenesis, we performed microarray-based comparative hybridization assay for gene copy number variations in primary tumor samples. Our data showed that TNIK gene was amplified in 7% (8/106) of Chinese gastric cancer patients. Theses amplifications were confirmed by fluorescence in situ hybridization analysis. PAMC82 human gastric cancer and T47D human breast cancer cell lines with TNIK amplification were identified to further understand the function of TNIK gene amplification. RNA-interference-mediated silencing of TNIK resulted in significant inhibition of cell growth and induction of cell death in TNIK-amplified, but not in TNIK-non-amplified, cell lines tested. This selective sensitivity to the TNIK inhibition was also observed under the effect of a small-molecule TNIK inhibitor. Furthermore, our data indicated that TNIK’s role in gastric cancer growth was not dependent on Wnt signaling but rather was involved in AKT activation and cell autophagy. Together, our results suggest that TNIK is a novel therapeutic target in gastric cancer and TNIK amplification can be potentially used for patient selection.


Clinical Cancer Research | 2014

Identification of a Subset of Human Non–Small Cell Lung Cancer Patients with High PI3Kβ and Low PTEN Expression, More Prevalent in Squamous Cell Carcinoma

Marie Cumberbatch; Ximing Tang; Garry Beran; Sonia Eckersley; Xin Wang; Rebecca Ellston; Simon Dearden; Sabina Cosulich; Paul D. Smith; Carmen Behrens; Edward S. Kim; Xinying Su; Shuqiong Fan; Neil Gray; David P. Blowers; Ignacio I. Wistuba; Chris Womack

Purpose: The phosphoinositide 3-kinase (PI3K) pathway is a major oncogenic signaling pathway and an attractive target for therapeutic intervention. Signaling through the PI3K pathway is moderated by the tumor suppressor PTEN, which is deficient or mutated in many human cancers. Molecular characterization of the PI3K signaling network has not been well defined in lung cancer; in particular, the role of PI3Kβ and its relation to PTEN in non–small cell lung cancer NSCLC remain unclear. Experimental Design: Antibodies directed against PI3Kβ and PTEN were validated and used to examine, by immunohistochemistry, expression in 240 NSCLC resection tissues [tissue microarray (TMA) set 1]. Preliminary observations were extended to an independent set of tissues (TMA set 2) comprising 820 NSCLC patient samples analyzed in a separate laboratory applying the same validated antibodies and staining protocols. The staining intensities for PI3Kβ and PTEN were explored and colocalization of these markers in individual tumor cores were correlated. Results: PI3Kβ expression was elevated significantly in squamous cell carcinomas (SCC) compared with adenocarcinomas. In contrast, PTEN loss was greater in SCC than in adenocarcinoma. Detailed correlative analyses of individual patient samples revealed a significantly greater proportion of SCC in TMA set 1 with higher PI3Kβ and lower PTEN expression when compared with adenocarcinoma. These findings were reinforced following independent analyses of TMA set 2. Conclusions: We identify for the first time a subset of NSCLC more prevalent in SCC, with elevated expression of PI3Kβ accompanied by a reduction/loss of PTEN, for whom selective PI3Kβ inhibitors may be predicted to achieve greater clinical benefit. Clin Cancer Res; 20(3); 595–603. ©2013 AACR.

Collaboration


Dive into the Xinying Su's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge