Xionglin Fan
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xionglin Fan.
Vaccine | 2010
Chunwei Shi; Lingxia Chen; Zhenhua Chen; Ying Zhang; Zhiguang Zhou; Jia Lu; Ruiling Fu; Chun Wang; Zhengming Fang; Xionglin Fan
Immunization with Mycobacterium bovis Bacille Calmette-Guerin (BCG) did not induce adequate Th1 responses to the latency antigen, HspX of M. tuberculosis. To increase the immunogenicity and protective efficacy of BCG, a recombinant BCG strain over-expressing antigen HspX (rBCG::X) was constructed. The recombinant strain rBCG::X expressed high levels of both HspX protein in the cytosol and Ag85B protein in the cytosol and supernatant. Mice vaccinated with rBCG::X produced a more consistent and enduring protective effect against infection with M. tuberculosis, showing lower bacterial load in lung and less severe lung pathology, than the control mice vaccinated with BCG strain containing the vector pMV261. The long-term protection induced by rBCG::X was associated with significant increases in antigen-specific IFN-gamma to both HspX and Ag85B proteins, while PPD-specific IFN-gamma responses declined. Our results suggest that latency antigens of M. tuberculosis may be promising targets for developing more effective recombinant BCG strains to protect against TB.
Clinical & Developmental Immunology | 2011
Jia Lu; Chun Wang; Zhiguang Zhou; Ying Zhang; Tingting Cao; Chunwei Shi; Zhenhua Chen; Lingxia Chen; Changxue Cai; Xionglin Fan
Heterologous prime-boost regimens utilizing BCG as a prime vaccine probably represent the best hope for the development of novel tuberculosis (TB) vaccines. In this study, we examined the immunogenicity and protective efficacy of DNA vaccine (pcD685A) expressing the fusion protein of Ag85A and ESAT-6 (r685A) and its booster effects in BCG-immunized mice. The recombinant r685A fusion protein stimulated higher level of antigen-specific IFN-γ release in tuberculin skin test- (TST-) positive healthy household contacts of active pulmonary TB patients than that in TST-negative population. Vaccination of C57BL/6 mice with pcD685A resulted in significant protection against challenge with virulent Mycobacterium tuberculosis H37Rv when compared with the control group. Most importantly, pcD685A could act as a BCG booster and amplify Th1-type cell-mediated immunity in the lung of BCG-vaccinated mice as shown the increased expression of IFN-γ. The most significant reduction in bacterial load of both spleen and lung was obtained in mice vaccinated with BCG prime and pcD685A DNA booster when compared with BCG or pcD685A alone. Thus, our study indicates that pcD685A may be an efficient booster vaccine against TB with a strong ability to enhance prior BCG immunity.
Clinical and Vaccine Immunology | 2009
Ruiling Fu; Chun Wang; Chunwei Shi; Mengji Lu; Zhengming Fang; Jia Lu; Fang Wang; Xionglin Fan
ABSTRACT Differentiation of latent tuberculosis infection (LTBI) from a healthy, unexposed population plays a vital role in the strategy of controlling and eliminating tuberculosis (TB). Both CFP21 and MPT64, antigens encoded by the RD2 region which are restricted in the Mycobacterium tuberculosis complex, are TB-specific diagnostic candidate antigens. In this study, we designed a fusion protein by linking both CFP21 and MPT64 with a 15-amino-acid peptide, (G4S1)3, and overexpressed the fusion protein in Escherichia coli. A new whole-blood gamma interferon assay based on the recombinant fusion protein, CFP21-MPT64 (rCM-WBIA), was developed and compared with the tuberculin skin test (TST) for screening of LTBI in household contacts of patients with sputum-positive TB. rCM-WBIA had a slightly higher sensitivity (66.7%; 24/36 contacts) than that of the TST (61.1%; 22/36 contacts) for household contacts. We found that rCM-WBIA had a very high sensitivity (90.9%) and specificity (71.4%) for LTBI detection compared with TST. The overall agreement between rCM-WBIA and TST was 83.3% (k = 0.64); rCM-WBIA positivity was associated with a larger TST induration. These results suggest that rCM-WBIA, based on the recombinant fusion protein CFP21-MPT64, is a promising alternative diagnostic tool for detection of LTBI.
Clinical & Developmental Immunology | 2012
Chun Wang; Ruiling Fu; Zhenhua Chen; Kun Tan; Lingxia Chen; Xindong Teng; Jia Lu; Chunwei Shi; Xionglin Fan
Recombinant Bacillus Calmette-Guérin (rBCG) strain is the promising vaccine candidate for tuberculosis (TB) prevention, which aims at providing more enduring and enhanced protection than the parental BCG vaccine. In this study, three rBCG strains overexpressing immunodominant antigens Ag85B (rBCG::85B), Ag85A (rBCG::85A), or both (rBCG::AB) of Mycobacterium tuberculosis were constructed, respectively. rBCG strains showed higher level of overexpression of Ag85A and/or Ag85B proteins than BCG containing empty vector pMV261(rBCG::261), which had low levels of endogenous expression of both proteins as expected. rBCG::AB strain could provide the strongest short-term and long-term protection in the lung against intravenous infection with virulent M. tuberculosis than rBCG::261 control and other two rBCG strains overexpressing single antigen. The stronger and longer-lasting protection provided by rBCG::AB than rBCG::261 was correlated with systemic in vitro antigen-specific IFN-γ responses. Therefore, our results indicate that rBCG::AB could be a very promising TB vaccine candidate and should be further evaluated for the preclinical test.
Medical Microbiology and Immunology | 2011
Chun Wang; Zhenhua Chen; Ruiling Fu; Ying Zhang; Lingxia Chen; Li Huang; Jinjin Li; Chunwei Shi; Xionglin Fan
The efficacy of Bacillus Calmette–Guérin (BCG) vaccine in preventing adult tuberculosis (TB) is highly variable. Genetic differences between BCG vaccine substrains, which can be divided into early strains and late strains based on the loss of region of difference two (RD2), may result in the variability and BCG substrains. The effect of lack of RD2 on the protective efficacy of BCG substrains against TB remains unknown. In this study, we demonstrated that CFP21 and MPT64(rCM) fusion protein, encoded by RD2 of Mycobacterium tuberculosis, could stimulate higher level of interferon (IFN)-γ in tuberculin skin test (TST)-positive healthy population than in TST-negative healthy population. Compared with naive mice challenged with virulent M. tuberculosis H37Rv, C57BL/6 mice vaccinated with pcD2164 DNA expressing rCM protein resulted in a greater decrease in the bacterial load of lung. Moreover, pcD2164 could boost the protective immunity in mice primed by BCG than BCG alone or DNA vaccination alone, as evidenced by lower bacterial load in the lung tissue and reduced lung pathology. The protection induced by BCG prime-DNA vaccine boost strategy was associated with significant increases in rCM protein-specific IFN-γ. Therefore, our results clearly indicate that the loss of RD2 has an important influence on the protective efficacy of different BCG substrains. These findings will benefit the optimal choice of BCG substrain for neonatal immunization and rational design of new vaccines for the prevention of TB.
Applied Microbiology and Biotechnology | 2015
Xuefeng Yuan; Xindong Teng; Yukai Jing; Jilei Ma; Maopeng Tian; Qi Yu; Lei Zhou; Ruibo Wang; Weihua Wang; Li Li; Xionglin Fan
Tuberculosis (TB) remains one of the most menacing infectious diseases, although attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine has been widely used to protect children against primary TB. There are increasing evidences that rapid growing and dormant Mycobacterium tuberculosis (M. tuberculosis) coexist in vivo after infection. However, BCG vaccine only elicits cell-mediated immune responses to secretory antigens expressed by rapid growing pathogen. BCG vaccine is thus unable to thwart the reactivation of latent tuberculosis infection (LTBI), and its protection wanes over age after neonatal immunization. In order to extend its ability for a durable protection, a novel recombinant BCG (rBCG) strain, named rBCG::XB, was constructed by overexpressing immunodominant multistage antigens of Ag85B and HspX, which are expressed by both rapid replicating and dormant M. tuberculosis. Long-term protective effect and immunogenicity of rBCG::XB were compared with the parental BCG in vaccinated C57BL/6 mice. Our results demonstrated that rBCG::XB provided the stronger and long-lasting protection against M. tuberculosis H37Rv intranasal infection than BCG. The rBCG::XB not only elicited the more durable multistage antigen-specific CD4+Th1-biased immune responses and specific polyfunctional CD4+T cells but also augmented the CD8+ CTL effects against Ag85B in vivo. In particular, higher levels of CD4+ TEM and CD8+ TCM cells, dominated by IL2+ CD4+ and CD8+ TCM cells, were obtained in the spleen of rBCG::XB vaccinated mice. Therefore, our findings indicate that rBCG::XB is a promising candidate to improve the efficacy of BCG.
Molecular Immunology | 2015
Jinping Liang; Xindong Teng; Xuefeng Yuan; Ying Zhang; Chunwei Shi; Tingting Yue; Lei Zhou; Jianrong Li; Xionglin Fan
Although Bacillus Calmette-Guérin (BCG) vaccine confers protection from Mycobacterium tuberculosis infection in children, its immune protection gradually wanes over time, and consequently leads to an inability to prevent the reactivation of latent infection of M. tuberculosis. Therefore, improving BCG for better control of tuberculosis (TB) is urgently needed. We thus hypothesized that recombinant BCG overexpressing immunodominant antigens expressed at different growth stages of M. tuberculosis could provide a more comprehensive protection against primary and latent M. tuberculosis infection. Here, a novel cocktail of recombinant BCG (rBCG) strains, namely ABX, was produced by combining rBCG::85A, rBCG::85B, and rBCG::X, which overexpressed respective multistage antigens Ag85A, Ag85B, and HspX of M. tuberculosis. Our results showed that ABX was able to induce a stronger immune protection than individual rBCGs or BCG against primary TB infection in C57BL/6 mice. Mechanistically, the immune protection was attributed to stronger antigen-specific CD4(+) Th1 responses, higher numbers of IFN-γ(+) CD4(+) TEM and IL-2(+) CD8(+) TCM cells elicited by ABX. These findings thus provide a novel strategy for the improvement of BCG efficacy and potentially a promising prophylactic TB vaccine candidate, warranting further investigation.
Oncotarget | 2016
Jilei Ma; Maopeng Tian; Xionglin Fan; Qi Yu; Yukai Jing; Weihua Wang; Li Li; Zijie Zhou
There is an urgent need for a vaccine against tuberculosis (TB) that is more effective than the current sole licensed option. However, target antigens of Mycobacterium tuberculosis with the vaccine potential remain elusive. Five immunodominant antigens with characteristic expressions at the stages of primary infection (Ag85A), the regulation of nutrition and metabolism when transferring from rapid growth to latency (PhoY2 and Rv3407), latency (Rv2626c), and reactivation (RpfB) were selected to construct the fusion polyprotein WH121, which has better immunogenicity and protection than each multistage antigen. DMT adjuvanted WH121 vaccinated C57BL/6 mice could confer persistent and significant protection against the respiratory challenge with 80 CFU of virulent M. tuberculosis H37Rv at 9 and 18 weeks after immunization, as the BCG vaccine did. Moreover, WH121/DMT could boost the BCG primed mice against post-exposure infection, and more significantly inhibit the growth of M. tuberculosis in the spleen than BCG repeat vaccination. The protection elicited by WH121/DMT is attributed to the WH121-specific Th1-type biased immune responses, characterized by increased antigen-specific IgG2a/IgG1 ratio and high levels of IFN-γ secreted by the splenocytes of vaccinated mice. In particular, high levels of IFN-γ+ TEM cells in the spleen are an effective biomarker for the vaccine-induced early protection, and the persistent protection mainly depends on the increasing IL-2+IFN-γ+CD4+ and CD8+ T cells, especially IL-2+ TCM cells. These findings demonstrate that multistage-specific antigens might be promising targets for the next generation TB vaccine, and a combination of these antigens such as WH121/DMT is required for further preclinical evaluation.
EBioMedicine | 2017
Jilei Ma; Xindong Teng; Xiaochun Wang; Xionglin Fan; Yaqi Wu; Maopeng Tian; Zijie Zhou; Longmeng Li
Adult tuberculosis (TB) is the main cause of TB epidemic and death. The infection results mainly by endogenous reactivation of latent TB infection and secondarily transmitted by exogenous infection. There is no vaccine for adult TB. To this end, we first chose antigens from a potential antigenic reservoir. The antigens strongly recognized T cells from latent and active TB infections that responded to antigens expressed by Mycobacterium tuberculosis cultured under different metabolic states. Fusions of single-stage polyprotein CTT3H, two-stage polyprotein A1D4, and multistage CMFO were constructed. C57BL/6 mice vaccinated with DMT adjuvant ed CMFO (CMFO-DMT) were protected more significantly than by CTT3H-DMT, and efficacy was similar to that of the only licensed vaccine, Bacillus Calmette–Guérin (BCG) and A1D4-DMT in the M. tuberculosis primary infection model. In the setting of BCG priming and latent TB infection, M. tuberculosis in the lung and spleen was eliminated more effectively in mice boosted with CMFO-DMT rather than with BCG, A1D4-DMT, or CTT3H-DMT. In particular, sterile immunity was only conferred by CMFO-DMT, which was associated with expedited homing of interferon-gamma+ CD4+ TEM and interleukin-2+ TCM cells from the spleen to the infected lung. CMFO-DMT represents a promising candidate to prevent the occurrence of adult TB through both prophylactic and therapeutic methods, and warrants assessment in preclinical and clinical trials.
Frontiers in Immunology | 2017
Qi Yu; Xiaochun Wang; Xionglin Fan
The only licensed vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) cannot prevent the prevalence of tuberculosis (TB), which remains a major public health problem worldwide. A more effective TB vaccine than BCG is urgently needed. Subunit vaccine is a promising strategy, and suitable adjuvants will benefit the development of effective TB subunit vaccines. MTO, consisting of monophosphoryl lipid A (MPLA), trehalose-6,6′-dibehenate (TDB), and MF59, was developed as an adjuvant of TB vaccine because of its ability to evoke the Th1-type T cell responses, while it is insufficient to induce single and multifunctional IL-2+ T cells and has a limited ability to confer protection against Mycobacterium tuberculosis infection. Heat-killed Mycobacterium vaccae (Mv), which can evoke cytotoxic CD8+ and CD4+ T cell responses and has adjuvanticity, was, in this study, combined with MTO to produce a new adjuvant, called MTOM. The TB fusion protein Rv3407-PhoY2-Ag85A-Rv2626c-RpfB (WH121) was mixed with MTO, Mv, and MTOM to produce three subunit vaccines, and the protective efficacy and immune responses were compared in C57BL/6 mice. WH121/MTOM provided better protection against TB than the other two vaccines, matching the performance of BCG vaccine. MTOM showed stronger ability to increase single and multifunctional IL-2+ T cells and induce Th1-type responses than MTO or Mv. Therefore, MTOM might be a promising adjuvant that could contribute to the development of TB subunit vaccines.