Xiongwu Wu
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiongwu Wu.
Science | 2015
Alberto Bartesaghi; Alan Merk; Soojay Banerjee; Doreen Matthies; Xiongwu Wu; Jacqueline L. S. Milne; Sriram Subramaniam
Pushing the limits of electron microscopy Recent advances in cryo–electron microscopy (cryo-EM) allow structures of large macromolecules to be determined at near-atomic resolution. So far, though, resolutions approaching 2 Å, where features key to drug design are revealed, remain the province of x-ray crystallography. Bartesaghi et al. achieved a resolution of 2.2 Å for a 465-kD ligand-bound protein complex using cryo-EM. The density map is detailed enough to show close to 800 water molecules, magnesium and sodium ions, and precise side-chain conformations. These results bring routine use of cryo-EM in rational drug design a step closer. Science, this issue p. 1147 Advances in electron microscopy allow protein structure determination at resolutions useful in drug discovery. Cryo–electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli β-galactosidase and the cell-permeant inhibitor phenylethyl β-d-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM.
Journal of Chemical Physics | 2005
Xiongwu Wu; Bernard R. Brooks
This work presents an accurate and efficient approach to the calculation of long-range interactions for molecular modeling and simulation. This method defines a local region for each particle and describes the remaining region as images of the local region statistically distributed in an isotropic and periodic way, which we call isotropic periodic images. Different from lattice sum methods that sum over discrete lattice images generated by periodic boundary conditions, this method sums over the isotropic periodic images to calculate long-range interactions, and is referred to as the isotropic periodic sum (IPS) method. The IPS method is not a lattice sum method and eliminates the need for a reciprocal space sum. Several analytic solutions of IPS for commonly used potentials are presented. It is demonstrated that the IPS method produces results very similar to that of Ewald summation, but with three major advantages, (1) it eliminates unwanted symmetry artifacts raised from periodic boundary conditions, (2) it can be applied to potentials of any functional form and to fully and partially homogenous systems as well as finite systems, and (3) it is more computationally efficient and can be easily parallelized for multiprocessor computers. Therefore, this method provides a general approach to an efficient calculation of long-range interactions for various kinds of molecular systems.
The EMBO Journal | 2002
Jacqueline L. S. Milne; Dan Shi; Peter B. Rosenthal; Joshua Sunshine; Gonzalo J. Domingo; Xiongwu Wu; Bernard R. Brooks; Richard N. Perham; Richard Henderson; Sriram Subramaniam
Electron cryo‐microscopy of ‘single particles’ is a powerful method to determine the three‐dimensional (3D) architectures of complex cellular assemblies. The pyruvate dehydrogenase multi‐enzyme complex couples the activity of three component enzymes (E1, E2 and E3) in the oxidative decarboxylation of pyruvate to generate acetyl‐CoA, linking glycolysis and the tricarboxylic acid cycle. We report here a 3D model for an 11 MDa, icosahedral pyruvate dehydrogenase sub‐complex, obtained by combining a 28 Å structure derived from electron cryo‐microscopy with previously determined atomic coordinates of the individual E1 and E2 components. A key feature is that the E1 molecules are located on the periphery of the assembly in an orientation that allows each of the 60 mobile lipoyl domains tethered to the inner E2 core to access multiple E1 and E2 active sites from inside the icosahedral complex. This unexpected architecture provides a highly efficient mechanism for active site coupling and catalytic rate enhancement by the motion of the lipoyl domains in the restricted annular region between the inner core and outer shell of the complex.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Cezar M. Khursigara; Xiongwu Wu; Peijun Zhang; Jonathan Lefman; Sriram Subramaniam
Bacterial chemoreceptors undergo conformational changes in response to variations in the concentration of extracellular ligands. These changes in chemoreceptor structure initiate a series of signaling events that ultimately result in regulation of rotation of the flagellar motor. Here we have used cryo-electron tomography combined with 3D averaging to determine the in situ structure of chemoreceptor assemblies in Escherichia coli cells that have been engineered to overproduce the serine chemoreceptor Tsr. We demonstrate that chemoreceptors are organized as trimers of receptor dimers and display two distinct conformations that differ principally in arrangement of the HAMP domains within each trimer. Ligand binding and methylation alter the distribution of chemoreceptors between the two conformations, with serine binding favoring the “expanded” conformation and chemoreceptor methylation favoring the “compact” conformation. The distinct positions of chemoreceptor HAMP domains within the context of a trimeric unit are thus likely to represent important aspects of chemoreceptor structural changes relevant to chemotaxis signaling. Based on these results, we propose that the compact and expanded conformations represent the “kinase-on” and “kinase-off” states of chemoreceptor trimers, respectively.
Journal of Bacteriology | 2008
Cezar M. Khursigara; Xiongwu Wu; Sriram Subramaniam
Chemoreceptor arrays are macromolecular complexes that form extended assemblies primarily at the poles of bacterial cells and mediate chemotaxis signal transduction, ultimately controlling cellular motility. We have used cryo-electron tomography to determine the spatial distribution and molecular architecture of signaling molecules that comprise chemoreceptor arrays in wild-type Caulobacter crescentus cells. We demonstrate that chemoreceptors are organized as trimers of receptor dimers, forming partially ordered hexagonally packed arrays of signaling complexes in the cytoplasmic membrane. This novel organization at the threshold between order and disorder suggests how chemoreceptors and associated molecules are arranged in signaling assemblies to respond dynamically in the activation and adaptation steps of bacterial chemotaxis.
Journal of Chemical Physics | 2008
Xiongwu Wu; Bernard R. Brooks
Isotropic periodic sum (IPS) is a method for the calculation of long-range interactions in molecular simulation based on the homogeneity of simulation systems. Three IPS models, 3D IPS, 2D IPS, and 1D IPS have been developed for three common types of homogeneous systems. Based on the fact that 3D IPS can well describe the long-range interactions of a heterogeneous system if a local region larger than the homogeneity scale is used, this work presents a method based on 3D IPS to calculate long-range interactions for all kinds of simulation systems, including homogeneous, heterogeneous, and finite systems. Unlike the original 3D IPS method that uses a local region defined by the cutoff distance, this method uses a local region larger than that defined by the cutoff distance to reach the homogeneity scale. To efficiently calculate interactions within such a large local region, this method split long-range interactions into two parts, a cutoff part and a long-range part. The cutoff part is calculated by summing over atom pairs within a cutoff range (about 10 A), and the long-range part is calculated using the discrete fast Fourier transform (DFFT) technique. This method is applied to electrostatic and van der Waals interactions for both periodic and non-periodic systems. Example simulations demonstrate that this method can accurately and efficiently calculate long-range interactions for molecular simulation.
Biophysical Journal | 2008
Ana Damjanović; Xiongwu Wu; E Bertrand García-Moreno; Bernard R. Brooks
Pathways of structural relaxation triggered by ionization of internal groups in staphylococcal nuclease (SNase) were studied through multiple self-guided Langevin dynamics (SGLD) simulations. Circular dichroism, steady-state Trp fluorescence, and nuclear magnetic resonance spectroscopy have shown previously that variants of SNase with internal Glu, Asp, and Lys at positions 66 or 92, and Arg at position 66, exhibit local reorganization or global unfolding when the internal ionizable group is charged. Except for Arg-66, these internal ionizable groups have unusual pKa values and are neutral at physiological pH. The structural trends observed in the simulations are in general agreement with experimental observations. The I92D variant, which unfolds globally upon ionization of Asp-92, in simulations often exhibits extensive hydration of the protein core, and sometimes also significant perturbations of the beta-barrel. In the crystal structure of the V66R variant, the beta1 strand from the beta-barrel is domain-swapped; in the simulations, the beta1 strand is sometimes partially released. The V66K variant, which in solutions shows reorganization of six residues at the C-terminus of helix alpha1 and perturbations in the beta-barrel structure, exhibits fraying of three residues of helix alpha1 in one simulation, and perturbations and partial unfolding of three beta-strands in a few other simulations. In sharp contrast, very small structural changes were observed in simulations of the wild-type protein. The simulations indicate that charging of internal groups frequently triggers penetration of water into the protein interior. The pKa values of Asp-92 and Arg-66 calculated with continuum methods on SGLD-relaxed structures reached the normal values in most simulations. Detailed analysis of accuracy and performance of SGLD demonstrates that SGLD outperforms LD in sampling of alternative protein conformations without loss of the accuracy and level of detail characteristic of regular LD.
Journal of Biological Chemistry | 2006
Jacqueline L. S. Milne; Xiongwu Wu; Mario J. Borgnia; Jeffrey S. Lengyel; Bernard R. Brooks; Dan Shi; Richard N. Perham; Sriram Subramaniam
The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (α2β2) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587-5598). An annular gap of ∼90 Å separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of ∼75 Å between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain.
Journal of Chemical Physics | 2009
Xiongwu Wu; Bernard R. Brooks
Isotropic periodic sum (IPS) is a method to calculate long-range interactions based on homogeneity of simulation systems. Long-range interactions are represented by interactions with isotropic periodic images of a defined local region and can be reduced to short ranged IPS potentials. The original electrostatic three-dimensional (3D)-IPS potential was derived based on a nonpolar homogeneous approximation and its application is limited to nonpolar or weak polar systems. This work derived a polar electrostatic 3D-IPS potential based on polar interactions. For the convenience of application, polynomial functions with rationalized coefficients are proposed for electrostatic and Lennard-Jones 3D-IPS potentials. Model systems of various polarities and several commonly used solvent systems are simulated to evaluate the 3D-IPS potentials. It is demonstrated that for polar systems the polar electrostatic 3D-IPS potential has much improved accuracy as compared to the nonpolar 3D-IPS potential. For homogeneous systems, the polar electrostatic 3D-IPS potential with a local region radius or cutoff distance of as small as 10 A can satisfactorily reproduce energetic, structural, and dynamic properties from the particle-meshed-Ewald method. For both homogeneous and heterogeneous systems, the 3D-IPS/discrete fast Fourier transform method using either the nonpolar or the polar electrostatic 3D-IPS potentials results in very similar simulation results.
Biophysical Journal | 2004
Xiongwu Wu; Bernard R. Brooks
The beta-hairpin fold mechanism of a nine-residue peptide, which is modified from the beta-hairpin of alpha-amylase inhibitor tendamistat (residues 15-23), is studied through direct folding simulations in explicit water at native folding conditions. Three 300-nanosecond self-guided molecular dynamics (SGMD) simulations have revealed a series of beta-hairpin folding events. During these simulations, the peptide folds repeatedly into a major cluster of beta-hairpin structures, which agree well with nuclear magnetic resonance experimental observations. This major cluster is found to have the minimum conformational free energy among all sampled conformations. This peptide also folds into many other beta-hairpin structures, which represent some local free energy minimum states. In the unfolded state, the N-terminal residues of the peptide, Tyr-1, Gln-2, and Asn-3, have a confined conformational distribution. This confinement makes beta-hairpin the only energetically favored structure to fold. The unfolded state of this peptide is populated with conformations with non-native intrapeptide interactions. This peptide goes through fully hydrated conformations to eliminate non-native interactions before folding into a beta-hairpin. The folding of a beta-hairpin starts with side-chain interactions, which bring two strands together to form interstrand hydrogen bonds. The unfolding of the beta-hairpin is not simply the reverse of the folding process. Comparing unfolding simulations using MD and SGMD methods demonstrate that SGMD simulations can qualitatively reproduce the kinetics of the peptide system.