Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiping Yang is active.

Publication


Featured researches published by Xiping Yang.


PLOS ONE | 2014

Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

Spurthi N. Nayak; Jian Song; Andrea Villa; Bhuvan Pathak; Tomas Ayala-Silva; Xiping Yang; James Todd; Neil C. Glynn; David N. Kuhn; Barry Glaz; Robert A. Gilbert; Jack C. Comstock; Jianping Wang

Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.


Frontiers in Plant Science | 2016

Natural Allelic Variations in Highly Polyploidy Saccharum Complex

Jian Song; Xiping Yang; Marcio F. R. Resende; Leandro G. Neves; James Todd; Jisen Zhang; Jack C. Comstock; Jianping Wang

Sugarcane (Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designed based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWA-mem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. The target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.


BMC Genomics | 2017

Mining sequence variations in representative polyploid sugarcane germplasm accessions

Xiping Yang; Jian Song; Qian You; Dev Paudel; Jisen Zhang; Jianping Wang

BackgroundSugarcane (Saccharum spp.) is one of the most important economic crops because of its high sugar production and biofuel potential. Due to the high polyploid level and complex genome of sugarcane, it has been a huge challenge to investigate genomic sequence variations, which are critical for identifying alleles contributing to important agronomic traits. In order to mine the genetic variations in sugarcane, genotyping by sequencing (GBS), was used to genotype 14 representative Saccharum complex accessions. GBS is a method to generate a large number of markers, enabled by next generation sequencing (NGS) and the genome complexity reduction using restriction enzymes.ResultsTo use GBS for high throughput genotyping highly polyploid sugarcane, the GBS analysis pipelines in 14 Saccharum complex accessions were established by evaluating different alignment methods, sequence variants callers, and sequence depth for single nucleotide polymorphism (SNP) filtering. By using the established pipeline, a total of 76,251 non-redundant SNPs, 5642 InDels, 6380 presence/absence variants (PAVs), and 826 copy number variations (CNVs) were detected among the 14 accessions. In addition, non-reference based universal network enabled analysis kit and Stacks de novo called 34,353 and 109,043 SNPs, respectively. In the 14 accessions, the percentages of single dose SNPs ranged from 38.3% to 62.3% with an average of 49.6%, much more than the portions of multiple dosage SNPs. Concordantly called SNPs were used to evaluate the phylogenetic relationship among the 14 accessions. The results showed that the divergence time between the Erianthus genus and the Saccharum genus was more than 10 million years ago (MYA). The Saccharum species separated from their common ancestors ranging from 0.19 to 1.65 MYA.ConclusionsThe GBS pipelines including the reference sequences, alignment methods, sequence variant callers, and sequence depth were recommended and discussed for the Saccharum complex and other related species. A large number of sequence variations were discovered in the Saccharum complex, including SNPs, InDels, PAVs, and CNVs. Genome-wide SNPs were further used to illustrate sequence features of polyploid species and demonstrated the divergence of different species in the Saccharum complex. The results of this study showed that GBS was an effective NGS-based method to discover genomic sequence variations in highly polyploid and heterozygous species.


Frontiers in Plant Science | 2018

Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array

Qian You; Xiping Yang; Ze Peng; Liping Xu; Jianping Wang

Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP) array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1) discussed the pros and cons of SNP array in general for high throughput genotyping, (2) presented the challenges of and solutions to SNP calling in polyploid species, (3) summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4) illustrated SNP array applications in several different polyploid crop species, then (5) discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6) provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.


Frontiers in Plant Science | 2018

Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.)

Xiping Yang; Md. S. Islam; Sushma Sood; Stephanie Maya; Erik Hanson; Jack C. Comstock; Jianping Wang

Sugarcane (Saccharum spp.) is an important economic crop, contributing up to 80% of table sugar used in the world and has become a promising feedstock for biofuel production. Sugarcane production has been threatened by many diseases, and fungicide applications for disease control have been opted out for sustainable agriculture. Orange rust is one of the major diseases impacting sugarcane production worldwide. Identifying quantitative trait loci (QTLs) and developing diagnostic markers are valuable for breeding programs to expedite release of superior sugarcane cultivars for disease control. In this study, an F1 segregating population derived from a cross between two hybrid sugarcane clones, CP95-1039 and CP88-1762, was evaluated for orange rust resistance in replicated trails. Three QTLs controlling orange rust resistance in sugarcane (qORR109, qORR4 and qORR102) were identified for the first time ever, which can explain 58, 12 and 8% of the phenotypic variation, separately. We also characterized 1,574 sugarcane putative resistance (R) genes. These sugarcane putative R genes and simple sequence repeats in the QTL intervals were further used to develop diagnostic markers for marker-assisted selection of orange rust resistance. A PCR-based Resistance gene-derived maker, G1 was developed, which showed significant association with orange rust resistance. The putative QTLs and marker developed in this study can be effectively utilized in sugarcane breeding programs to facilitate the selection process, thus contributing to the sustainable agriculture for orange rust disease control.


Frontiers in Plant Science | 2018

Potentials, Challenges, and Genetic and Genomic Resources for Sugarcane Biomass Improvement

Ramkrishna Kandel; Xiping Yang; Jian Song; Jianping Wang

Lignocellulosic biomass has become an emerging feedstock for second-generation bioethanol production. Sugarcane (Saccharum spp. hybrids), a very efficient perennial C4 plant with a high polyploid level and complex genome, is considered a top-notch candidate for biomass production due to its salient features viz. fast growth rate and abilities for high tillering, ratooning, and photosynthesis. Energy cane, an ideal type of sugarcane, has been bred specifically as a biomass crop. In this review, we described (1) biomass potentials of sugarcane and its underlying genetics, (2) challenges associated with biomass improvement such as large and complex genome, narrow gene pool in existing commercial cultivars, long breeding cycle, and non-synchronous flowering, (3) available genetic resources such as germplasm resources, and genomic and cell wall-related databases that facilitate biomass improvement, and (4) mining candidate genes controlling biomass in genomic databases. We extensively reviewed databases for biomass-related genes and their usefulness in biofuel generation. This review provides valuable resources for sugarcane breeders, geneticists, and broad scientific communities involved in bioenergy production.


bioRxiv | 2018

Genome-wide association study of multiple yield components in a diversity panel of polyploid sugarcane (Saccharum spp.)

Xiping Yang; Ziliang Luo; James Todd; Sushma Sood; Jianping Wang

Sugarcane (Saccharum spp.) is an important economic crop, contributes up to 80% of sugar and approximately 60% bio-fuel globally. To meet the increased demand for sugar and bio-fuel supplies, it is critical to breed sugarcane cultivars with robust performance in yield components. Therefore, dissection of causal DNA sequence variants is of great importance by providing genetic resources and fundamental information for crop improvement. In this study, we evaluated and analyzed nine yield components in a sugarcane diversity panel consisting of 308 accessions primarily selected from the “world collection of sugarcane and related grasses”. By genotyping the diversity panel using target enrichment sequencing, we identified a large number of sequence variants. Genome-wide association study between the markers and traits were conducted with dosages and gene actions taken into consideration. In total, 217 non-redundant markers and 225 candidate genes were identified to be significantly associated with the yield components, which can serve as a comprehensive genetic resource database for future gene identification, characterization, and selection for sugarcane improvement. We further investigated runs of homozygosity (ROH) in the sugarcane diversity panel. We characterized 282 ROHs, and found that the occurrence of ROH in the genome were non-random and probably under selection. ROHs were associated with total weight and dry weight, and high ROHs resulted in decrease of the two traits. This study approved that genomic inbreeding has led to negative impacts on sugarcane yield.


Scientific Reports | 2018

Surveying the genome and constructing a high-density genetic map of napiergrass ( Cenchrus purpureus Schumach)

Dev Paudel; Baskaran Kannan; Xiping Yang; Karen R. Harris-Shultz; Mahendar Thudi; Rajeev K. Varshney; Fredy Altpeter; Jianping Wang

Napiergrass (Cenchrus purpureus Schumach) is a tropical forage grass and a promising lignocellulosic biofuel feedstock due to its high biomass yield, persistence, and nutritive value. However, its utilization for breeding has lagged behind other crops due to limited genetic and genomic resources. In this study, next-generation sequencing was first used to survey the genome of napiergrass. Napiergrass sequences displayed high synteny to the pearl millet genome and showed expansions in the pearl millet genome along with genomic rearrangements between the two genomes. An average repeat content of 27.5% was observed in napiergrass including 5,339 simple sequence repeats (SSRs). Furthermore, to construct a high-density genetic map of napiergrass, genotyping-by-sequencing (GBS) was employed in a bi-parental population of 185 F1 hybrids. A total of 512 million high quality reads were generated and 287,093 SNPs were called by using multiple de-novo and reference-based SNP callers. Single dose SNPs were used to construct the first high-density linkage map that resulted in 1,913 SNPs mapped to 14 linkage groups, spanning a length of 1,410 cM and a density of 1 marker per 0.73 cM. This map can be used for many further genetic and genomic studies in napiergrass and related species.


Plant Biotechnology Journal | 2018

Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a ‘sweet’ crop with ‘bitter’ genomes

Xiping Yang; Jian Song; James Todd; Ze Peng; Dev Paudel; Ziliang Luo; Xiaokai Ma; Qian You; Erik Hanson; Zifan Zhao; Yang Zhao; Jisen Zhang; Ray Ming; Jianping Wang

Summary Sugarcane (Saccharum spp.) is a highly energy‐efficient crop primarily for sugar and bio‐ethanol production. Sugarcane genetics and cultivar improvement have been extremely challenging largely due to its complex genomes with high polyploidy levels. In this study, we deeply sequenced the coding regions of 307 sugarcane germplasm accessions. Nearly five million sequence variations were catalogued. The average of 98× sequence depth enabled different allele dosages of sequence variation to be differentiated in this polyploid collection. With selected high‐quality genome‐wide SNPs, we performed population genomic studies and environmental association analysis. Results illustrated that the ancient sugarcane hybrids, S. barberi and S. sinense, and modern sugarcane hybrids are significantly different in terms of genomic compositions, hybridization processes and their potential ancestry contributors. Linkage disequilibrium (LD) analysis showed a large extent of LD in sugarcane, with 962.4 Kbp, 2739.2 Kbp and 3573.6 Kbp for S. spontaneum, S. officinarum and modern S. hybrids respectively. Candidate selective sweep regions and genes were identified during domestication and historical selection processes of sugarcane in addition to genes associated with environmental variables at the original locations of the collection. This research provided an extensive amount of genomic resources for sugarcane community and the in‐depth population genomic analyses shed light on the breeding and evolution history of sugarcane, a highly polyploid species.


Euphytica | 2018

Correction to: Molecular dissection of sugar related traits and it's attributes in Saccharum spp. hybrids

Md. Sariful Islam; Xiping Yang; Sushma Sood; Jack C. Comstock; Fenggang Zan; Jianping Wang

This article has mistakenly been processed as Review Article, whereas it should have been published as Original Article and should be regarded as such by the reader.

Collaboration


Dive into the Xiping Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Song

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Jack C. Comstock

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Sushma Sood

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

James Todd

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Qian You

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Jisen Zhang

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Md. Sariful Islam

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ze Peng

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge