Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiu-Feng Wan is active.

Publication


Featured researches published by Xiu-Feng Wan.


Applied and Environmental Microbiology | 2004

Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays

Sung-Keun Rhee; Xueduan Liu; Liyou Wu; Song C. Chong; Xiu-Feng Wan; Jizhong Zhou

ABSTRACT To effectively monitor biodegrading populations, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the 2,402 known genes and pathways involved in biodegradation and metal resistance. This array contained 1,662 unique and group-specific probes with <85% similarity to their nontarget sequences. Based on artificial probes, our results showed that under hybridization conditions of 50°C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. The detection limit was ∼5 to 10 ng of genomic DNA in the absence of background DNA and 50 to 100 ng of pure-culture genomic DNA in the presence of background DNA or 1.3 × 107 cells in the presence of background RNA. Strong linear relationships between the signal intensity and the target DNA and RNA were observed (r2 = 0.95 to 0.99). Application of this type of microarray to analyze naphthalene-amended enrichment and soil microcosms demonstrated that microflora changed differently depending on the incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in naphthalene-degrading enrichments, the genes involved in naphthalene (and polyaromatic hydrocarbon and nitrotoluene) degradation from gram-negative microorganisms, such as Ralstonia, Comamonas, and Burkholderia, were most abundant in the soil microcosms. In contrast to general conceptions, naphthalene-degrading genes from Pseudomonas were not detected, although Pseudomonas is widely known as a model microorganism for studying naphthalene degradation. The real-time PCR analysis with four representative genes showed that the microarray-based quantification was very consistent with real-time PCR (r2 = 0.74). In addition, application of the arrays to both polyaromatic-hydrocarbon- and benzene-toluene-ethylbenzene-xylene-contaminated and uncontaminated soils indicated that the developed microarrays appeared to be useful for profiling differences in microbial community structures. Our results indicate that this technology has potential as a specific, sensitive, and quantitative tool in revealing a comprehensive picture of the compositions of biodegradation genes and the microbial community in contaminated environments, although more work is needed to improve detection sensitivity.


Journal of Bacteriology | 2004

Transcriptomic and Proteomic Characterization of the Fur Modulon in the Metal-Reducing Bacterium Shewanella oneidensis

Xiu-Feng Wan; Nathan C. VerBerkmoes; Lee Ann McCue; Dawn Stanek; Heather M. Connelly; Loren Hauser; Liyou Wu; Xueduan Liu; Tingfen Yan; Adam B. Leaphart; Robert L. Hettich; Jizhong Zhou; Dorothea K. Thompson

The availability of the complete genome sequence for Shewanella oneidensis MR-1 has permitted a comprehensive characterization of the ferric uptake regulator (Fur) modulon in this dissimilatory metal-reducing bacterium. We have employed targeted gene mutagenesis, DNA microarrays, proteomic analysis using liquid chromatography-mass spectrometry, and computational motif discovery tools to define the S. oneidensis Fur regulon. Using this integrated approach, we identified nine probable operons (containing 24 genes) and 15 individual open reading frames (ORFs), either with unknown functions or encoding products annotated as transport or binding proteins, that are predicted to be direct targets of Fur-mediated repression. This study suggested, for the first time, possible roles for four operons and eight ORFs with unknown functions in iron metabolism or iron transport-related functions. Proteomic analysis clearly identified a number of transporters, binding proteins, and receptors related to iron uptake that were up-regulated in response to a fur deletion and verified the expression of nine genes originally annotated as pseudogenes. Comparison of the transcriptome and proteome data revealed strong correlation for genes shown to be undergoing large changes at the transcript level. A number of genes encoding components of the electron transport system were also differentially expressed in a fur deletion mutant. The gene omcA (SO1779), which encodes a decaheme cytochrome c, exhibited significant decreases in both mRNA and protein abundance in the fur mutant and possessed a strong candidate Fur-binding site in its upstream region, thus suggesting that omcA may be a direct target of Fur activation.


Journal of Virology | 2011

Indications that Live Poultry Markets are a Major Source of Human H5N1 Influenza Virus Infection in China

Xiu-Feng Wan; Libo Dong; Yu Lan; Li-Ping Long; Cuiling Xu; Shumei Zou; Zi Li; Leying Wen; Zhipeng Cai; Wei Wang; Xiaodan Li; Fan Yuan; Hongtao Sui; Ye Zhang; Jie Dong; Shanhua Sun; Yan Gao; Min Wang; Tian Bai; Lei Yang; Dexin Li; Weizhong Yang; Hongjie Yu; Shiwen Wang; Zijian Feng; Wang Y; Yuanji Guo; Richard J. Webby; Yuelong Shu

ABSTRACT Human infections of H5N1 highly pathogenic avian influenza virus have continued to occur in China without corresponding outbreaks in poultry, and there is little conclusive evidence of the source of these infections. Seeking to identify the source of the human infections, we sequenced 31 H5N1 viruses isolated from humans in China (2005 to 2010). We found a number of viral genotypes, not all of which have similar known avian virus counterparts. Guided by patient questionnaire data, we also obtained environmental samples from live poultry markets and dwellings frequented by six individuals prior to disease onset (2008 and 2009). H5N1 viruses were isolated from 4 of the 6 live poultry markets sampled. In each case, the genetic sequences of the environmental and corresponding human isolates were highly similar, demonstrating a link between human infection and live poultry markets. Therefore, infection control measures in live poultry markets are likely to reduce human H5N1 infection in China.


BMC Evolutionary Biology | 2004

Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes

Xiu-Feng Wan; Dong Xu; Andris Kleinhofs; Jizhong Zhou

BackgroundCodon usage bias has been widely reported to correlate with GC composition. However, the quantitative relationship between codon usage bias and GC composition across species has not been reported.ResultsBased on an informatics method (SCUO) we developed previously using Shannon informational theory and maximum entropy theory, we investigated the quantitative relationship between codon usage bias and GC composition. The regression based on 70 bacterial and 16 archaeal genomes showed that in bacteria, SCUO = -2.06 * GC3 + 2.05*(GC3)2 + 0.65, r = 0.91, and that in archaea, SCUO = -1.79 * GC3 + 1.85*(GC3)2 + 0.56, r = 0.89. We developed an analytical model to quantify synonymous codon usage bias by GC compositions based on SCUO. The parameters within this model were inferred by inspecting the relationship between codon usage bias and GC composition across 70 bacterial and 16 archaeal genomes. We further simplified this relationship using only GC3. This simple model was supported by computational simulation.ConclusionsThe synonymous codon usage bias could be simply expressed as 1+ (p/2)log2(p/2) + ((1-p)/2)log2((l-p)/2), where p = GC3. The software we developed for measuring SCUO (codonO) is available at http://digbio.missouri.edu/~wanx/cu/codonO.


Infection, Genetics and Evolution | 2010

Avian-origin H3N2 canine influenza A viruses in Southern China

Shoujun Li; Zhihai Shi; Peirong Jiao; Guihong Zhang; Zhiwen Zhong; Wenru Tian; Li-Ping Long; Zhipeng Cai; Xingquan Zhu; Ming Liao; Xiu-Feng Wan

This study reports four sporadic cases of H3N2 canine influenza in Southern China, which were identified from sick dogs from May 2006 to October 2007. The evolutionary analysis showed that all eight segments of these four viruses are avian-origin and phylogenetically close to the H3N2 canine influenza viruses reported earlier in South Korea. Systematic surveillance is required to monitor the disease and evolutionary behavior of this virus in canine populations in China.


PLOS ONE | 2008

Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007

Xiu-Feng Wan; Tung Nguyen; C. Todd Davis; Catherine B. Smith; Zi Ming Zhao; Margaret Carrel; Kenjiro Inui; Hoa T. Do; Duong T. Mai; Samadhan Jadhao; Amanda Balish; Bo Shu; Feng Luo; Michael Emch; Yumiko Matsuoka; Stephen Lindstrom; Nancy J. Cox; Cam V. Nguyen; Alexander Klimov; Ruben O. Donis

Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.


PLOS Computational Biology | 2010

A computational framework for influenza antigenic cartography.

Zhipeng Cai; Tong Zhang; Xiu-Feng Wan

Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.


Journal of Bacteriology | 2006

Transcriptome Profiling of Shewanella oneidensis Gene Expression following Exposure to Acidic and Alkaline pH

Adam B. Leaphart; Dorothea K. Thompson; Katherine H. Huang; Eric J. Alm; Xiu-Feng Wan; Adam P. Arkin; Steven D. Brown; Liyou Wu; Tingfen Yan; Xueduan Liu; Gene S. Wickham; Jizhong Zhou

The molecular response of Shewanella oneidensis MR-1 to variations in extracellular pH was investigated based on genomewide gene expression profiling. Microarray analysis revealed that cells elicited both general and specific transcriptome responses when challenged with environmental acid (pH 4) or base (pH 10) conditions over a 60-min period. Global responses included the differential expression of genes functionally linked to amino acid metabolism, transcriptional regulation and signal transduction, transport, cell membrane structure, and oxidative stress protection. Response to acid stress included the elevated expression of genes encoding glycogen biosynthetic enzymes, phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS), whereas the molecular response to alkaline pH was characterized by upregulation of nhaA and nhaR, which are predicted to encode an Na+/H+ antiporter and transcriptional activator, respectively, as well as sulfate transport and sulfur metabolism genes. Collectively, these results suggest that S. oneidensis modulates multiple transporters, cell envelope components, and pathways of amino acid consumption and central intermediary metabolism as part of its transcriptome response to changing external pH conditions.


Journal of Virology | 2013

Molecular Basis for Broad Neuraminidase Immunity: Conserved Epitopes in Seasonal and Pandemic H1N1 as well as H5N1 Influenza Viruses

Hongquan Wan; Jin Gao; Kemin Xu; Hongjun Chen; Laura Couzens; Katie Rivers; Judy D. Easterbrook; Kevin Yang; Lei Zhong; Mohsen Rajabi; Jianqiang Ye; Ishrat Sultana; Xiu-Feng Wan; X. Liu; Daniel R. Perez; Jeffery K. Taubenberger; Maryna C. Eichelberger

ABSTRACT Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.


Infection, Genetics and Evolution | 2011

Identification of an H6N6 swine influenza virus in southern China.

Guihong Zhang; Weili Kong; Wenbao Qi; Li-Ping Long; Zong-Xi Cao; Liangzong Huang; Haitao Qi; Nan Cao; Wenhua Wang; Fu-Rong Zhao; Zhangyong Ning; Ming Liao; Xiu-Feng Wan

This is the first report of avian-like H6N6 swine influenza virus from swine in southern China. Phylogenetic analysis indicated that this virus might originate from domestic ducks. Serological surveillance suggested there had been sporadic H6 swine influenza infections in this area. Continuing study is required to determine if this virus could be established in the swine population and pose potential threats to public health.

Collaboration


Dive into the Xiu-Feng Wan's collaboration.

Top Co-Authors

Avatar

Richard J. Webby

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Li-Ping Long

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Yifei Xu

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Hailiang Sun

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Zhipeng Cai

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Dong Xu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Jialiang Yang

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Lei Li

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry A. Hanson

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge