Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiu Shen is active.

Publication


Featured researches published by Xiu Shen.


Biomaterials | 2012

Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy

Xiao-Dong Zhang; Di Wu; Xiu Shen; Jie Chen; Yuan-Ming Sun; Pei-Xun Liu; Xing-Jie Liang

Gold nanoparticles have been conceived as a radiosensitizer in cancer radiation therapy, but one of the important questions for primary drug screening is what size of gold nanoparticles can optimally enhance radiation effects. Herein, we perform in vitro and in vivo radiosensitization studies of 4.8, 12.1, 27.3, and 46.6 nm PEG-coated gold nanoparticles. In vitro results show that all sizes of the PEG-coated gold nanoparticles can cause a significant decrease in cancer cell survival after gamma radiation. 12.1 and 27.3 nm PEG-coated gold nanoparticles have dispersive distributions in the cells and stronger sensitization effects than 4.8 and 46.6 nm particles by both cell apoptosis and necrosis. Further, in vivo results also show all sizes of the PEG-coated gold nanoparticles can significantly decrease tumor volume and weight after 5 Gy radiations, and 12.1 and 27.3 nm PEG-coated gold nanoparticles have greater sensitization effects than 4.8 and 46.6 nm particles, which can lead to almost complete disappearance of the tumor. In vivo biodistribution confirms that 12.1 and 27.3 nm PEG-coated gold nanoparticles are accumulated in the tumor with high concentrations. The pathology, immune response, and blood biochemistry indicate that the PEG-coated gold nanoparticles have not caused spleen and kidney damages, but give rise to liver damage and gold accumulation. It can be concluded that 12.1 and 27.3 nm PEG-coated gold nanoparticles show high radiosensitivity, and these results have an important indication for possible radiotherapy and drug delivery.


International Journal of Nanomedicine | 2011

Size-dependent in vivo toxicity of PEG-coated gold nanoparticles.

Xiao-Dong Zhang; Di Wu; Xiu Shen; Pei-Xun Liu; Na Yang; Bin Zhao; Hao Zhang; Yuan-Ming Sun; Liang-An Zhang; Feiyue Fan

Background Gold nanoparticle toxicity research is currently leading towards the in vivo experiment. Most toxicology data show that the surface chemistry and physical dimensions of gold nanoparticles play an important role in toxicity. Here, we present the in vivo toxicity of 5, 10, 30, and 60 nm PEG-coated gold nanoparticles in mice. Methods Animal survival, weight, hematology, morphology, organ index, and biochemistry were characterized at a concentration of 4000 μg/kg over 28 days. Results The PEG-coated gold particles did not cause an obvious decrease in body weight or appreciable toxicity even after their breakdown in vivo. Biodistribution results show that 5 nm and 10 nm particles accumulated in the liver and that 30 nm particles accumulated in the spleen, while the 60 nm particles did not accumulate to an appreciable extent in either organ. Transmission electron microscopic observations showed that the 5, 10, 30, and 60 nm particles located in the blood and bone marrow cells, and that the 5 and 60 nm particles aggregated preferentially in the blood cells. The increase in spleen index and thymus index shows that the immune system can be affected by these small nanoparticles. The 10 nm gold particles induced an increase in white blood cells, while the 5 nm and 30 nm particles induced a decrease in white blood cells and red blood cells. The biochemistry results show that the 10 nm and 60 nm PEG-coated gold nanoparticles caused a significant increase in alanine transaminase and aspartate transaminase levels, indicating slight damage to the liver. Conclusion The toxicity of PEG-coated gold particles is complex, and it cannot be concluded that the smaller particles have greater toxicity. The toxicity of the 10 nm and 60 nm particles was obviously higher than that of the 5 nm and 30 nm particles. The metabolism of these particles and protection of the liver will be more important issues for medical applications of gold-based nanomaterials in future.


Biomaterials | 2012

In vivo renal clearance, biodistribution, toxicity of gold nanoclusters

Xiao-Dong Zhang; Di Wu; Xiu Shen; Pei-Xun Liu; Fei-Yue Fan; Saijun Fan

Gold nanoparticles have shown great prospective in cancer diagnosis and therapy, but they can not be metabolized and prefer to accumulate in liver and spleen due to their large size. The gold nanoclusters with small size can penetrate kidney tissue and have promise to decrease in vivo toxicity by renal clearance. In this work, we explore the in vivo renal clearance, biodistribution, and toxicity responses of the BSA- and GSH-protected gold nanoclusters for 24 h and 28 days. The BSA-protected gold nanoclusters have low-efficient renal clearance and only 1% of gold can be cleared, but the GSH-protected gold nanoclusters have high-efficient renal clearance and 36% of gold can be cleared after 24 h. The biodistribution further reveals that 94% of gold can be metabolized for the GSH-protected nanoclusters, but only less than 5% of gold can be metabolized for the BSA-protected nanoclusters after 28 days. Both of the GSH- and BSA-protected gold nanoclusters cause acute infection, inflammation, and kidney function damage after 24 h, but these toxicity responses for the GSH-protected gold nanoclusters can be eliminated after 28 days. Immune system can also be affected by the two kinds of gold nanoclusters, but the immune response for the GSH-protected gold nanoclusters can also be recovered after 28 days. These findings show that the GSH-protected gold nanoclusters have small size and can be metabolized by renal clearance and thus the toxicity can be significantly decreased. The BSA-protected gold nanoclusters, however, can form large compounds and further accumulate in liver and spleen which can cause irreparable toxicity response. Therefore, the GSH-protected gold nanoclusters have great potential for in vivo imaging and therapy, and the BSA-protected gold nanoclusters can be used as the agent of liver cancer therapy.


Advanced Healthcare Materials | 2014

Enhanced Tumor Accumulation of Sub‐2 nm Gold Nanoclusters for Cancer Radiation Therapy

Xiao-Dong Zhang; Jie Chen; Zhentao Luo; Di Wu; Xiu Shen; Sha-Sha Song; Yuan-Ming Sun; Pei-Xun Liu; Jing Zhao; Shuaidong Huo; Saijun Fan; Fei-Yue Fan; Xing-Jie Liang; Jianping Xie

A new type of metabolizable and efficient radiosensitizers for cancer radiotherapy is presented by combining ultrasmall Au nanoclusters (NCs, <2 nm) with biocompatible coating ligands (glutathione, GSH). The new nanoconstruct (GSH-coated Au25 NCs) inherits attractive features of both the Au core (strong radiosensitizing effect) and GSH shell (good biocompatibility). It can preferentially accumulate in tumor via the improved EPR effect, which leads to strong enhancement for cancer radiotherapy. After the treatment, the small-sized GSH-Au25 NCs can be efficiently cleared by the kidney, minimizing any potential side effects due to the accumulation of Au25 NCs in the body.


Advanced Functional Materials | 2014

Metabolizable Bi2Se3 Nanoplates: Biodistribution, Toxicity, and Uses for Cancer Radiation Therapy and Imaging

Xiao-Dong Zhang; Jie Chen; Yuho Min; Gyeong Bae Park; Xiu Shen; Sha-Sha Song; Yuan-Ming Sun; Hao Wang; Wei Long; Jianping Xie; Kai Gao; Lianfeng Zhang; Saijun Fan; Fei-Yue Fan; Unyong Jeong

Bi, a high atomic number element, has a high photoelectric absorption coefficient, and Se has anticancer activity. Hence, their compound chalcogenide (Bi2Se3) deserves a thorough investigation for biomedical applications. This study reveals that Bi2Se3 nanoplates (54 nm wide) protected with poly(vinylpyrollidone) (PVP) could be presumed to have low toxicity even at a high dose of 20 mg/kg in mice. This conclusion is made through studies on the biodistribution and 90-day long term in vivo clearance of the nanoplates. The liver and spleen are dominant organs for accumulation of the nanoplates, which is mainly due to RES absorption. 93% of the nanoplates are cleared after 90 days of treatment. Concentrations of Bi and Se in tumor tissue continuously increased until 72 h after intraperitoneal injection into mice. Such selective accumulation of Bi is utilized to enhance the contrast of X-ray computerized tomography (CT) images. Bi element concentrated in a tumor leads to damage on the tumor cells when exposed to gamma radiation. Growth of the tumor is significantly delayed and stopped in 16 days after the tumor is treated by radiation with Bi2Se3 nanoplates. This work clearly shows that Bi2Se3 nanoplates may be used for cancer radiation therapy and CT imaging. The nanoplates deserve further study for biological and medical applications.


Scientific Reports | 2015

Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

Xiao-Dong Zhang; Zhentao Luo; Jie Chen; Sha-Sha Song; Xun Yuan; Xiu Shen; Hao Wang; Yuan-Ming Sun; Kai Gao; Lianfeng Zhang; Saijun Fan; David Tai Leong; Meili Guo; Jianping Xie

Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall Au29–43(SG)27–37 nanoclusters (<2 nm) with a naturally-occurring peptide (e.g., glutathione or GSH) as the protecting shell. The GSH-coated Au29–43(SG)27–37 nanoclusters can escape the RES absorption, leading to a good tumor uptake (~8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall Au29–43(SG)27–37 nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long-term side-effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide-protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.


Small | 2015

Storage of Gold Nanoclusters in Muscle Leads to their Biphasic in Vivo Clearance

Xiao-Dong Zhang; Zhentao Luo; Jie Chen; Hao Wang; Sha Sha Song; Xiu Shen; Wei Long; Yuan-Ming Sun; Saijun Fan; Kaiyuan Zheng; David Tai Leong; Jianping Xie

Ultrasmall gold nanoclusters (Au NCs) show great potential in biomedical applications. Long-term biodistribution, retention, toxicity, and pharmacokinetics profiles are pre-requisites in their potential clinical applications. Here, the biodistribution, clearance, and toxicity of one widely used Au NC species-glutathione-protected Au NCs or GSH-Au NCs-are systematically investigated over a relatively long period of 90 days in mice. Most of the Au NCs are cleared at 30 days post injection (p.i.) with a major accumulation in liver and kidney. However, it is surprising that an abnormal increase of the Au amount in the heart, liver, spleen, lung, and testis is observed at 60 and 90 days p.i., indicating that the injected Au NCs form a V-shaped time-dependent distribution profile in various organs. Further investigations reveal that Au NCs are steadily accumulating in the muscle in the first 30 days p.i., and the as-stored Au NCs gradually release into the blood in 30-90 days p.i., which induces a re-distribution and re-accumulation of Au NCs in all blood-rich organs. Further hematology and biochemistry studies show that the re-accumulation of Au NCs still causes some liver toxicity at 30 days p.i. The muscle storage and subsequent release may give rise to the potential accumulation and toxicity risk of functional nanomaterials over long periods of time.


ACS Nano | 2016

Highly Catalytic Nanodots with Renal Clearance for Radiation Protection

Xiao-Dong Zhang; Jinxuan Zhang; Junying Wang; Jiang Yang; Jie Chen; Xiu Shen; Jiao Deng; Dehui Deng; Wei Long; Yuan-Ming Sun; Changlong Liu; Meixian Li

Ionizing radiation (gamma and X-ray) is widely used in industry and medicine, but it can also pose a significant hazardous effect on health and induce cancer, physical deformity, and even death, due to DNA damage and invasion of free radicals. There is therefore an urgent unmet demand in designing highly efficient radioprotectants with synergetic integration of effective renal clearance and low toxicity. In this study, we designed ultrasmall (sub-5 nm) highly catalytically active and cysteine-protected MoS2 dots as radioprotectants and investigated their application in protection against ionizing radiation. In vivo preclinical studies showed that the surviving fraction of MoS2-treated mice can appreciably increase to up to 79% when they were exposed to high-energy ionizing radiation. Furthermore, MoS2 dots can contribute in cleaning up the accumulated free radicals within the body, repairing DNA damage, and recovering all vital chemical and biochemical indicators, suggesting their unique role as free radical scavengers. MoS2 dots showed rapid and efficient urinary excretion with more than 80% injected dose eliminated from the body after 24 h due to their ultrasmall hydrodynamic size and did not cause any noticeable toxic responses up to 30 days.


International Journal of Nanomedicine | 2013

Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice

Jie Chen; Hao Wang; Wei Long; Xiu Shen; Di Wu; Sha-Sha Song; Yuan-Ming Sun; Pei-Xun Liu; Saijun Fan; Feiyue Fan; Xiao-Dong Zhang

Gold nanoparticles have received wide interest in disease diagnosis and therapy, but one of the important issues is their toxicological effects in vivo. Sex differences in the toxicity of gold nanoparticles are not clear. In this work, body weight, organ weight, hematology, and biochemistry were used to evaluate sex differences in immune response and liver and kidney damage. Pathology was used to observe the general toxicity of reproductive organs. The immune response was influenced significantly in female mice, with obvious changes in spleen and thymus index. Hematology results showed that male mice treated with 22.5 nm gold nanoparticles received more significant infection and inflammation than female mice. Meanwhile, the biochemistry results showed that 4.4 and 22.5 nm gold nanoparticles caused more significant liver damage in male mice than female mice, while 22.5, 29.3, and 36.1 nm gold nanoparticles caused more significant kidney damage in female mice than male mice. No significant toxicological response was found in the reproductive system for female or male mice. It was found that gold nanoparticles caused more serious liver toxicity and infection in male mice than female mice. These findings indicated that sex differences may be one of the important elements for in vivo toxicity of gold nanoparticles.


International Journal of Nanomedicine | 2016

Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy.

Wang J; Jie Chen; Jiang Yang; Hao Wang; Xiu Shen; Yuan-Ming Sun; Meili Guo; Xiao-Dong Zhang

Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system.

Collaboration


Dive into the Xiu Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan-Ming Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Saijun Fan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Pei-Xun Liu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jie Chen

University of Alberta

View shared research outputs
Top Co-Authors

Avatar

Sha-Sha Song

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Wei Long

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hao Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Di Wu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jianping Xie

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge