Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiu-wu Bian is active.

Publication


Featured researches published by Xiu-wu Bian.


Journal of Immunology | 2012

Tumor-Associated Microglia/Macrophages Enhance the Invasion of Glioma Stem-like Cells via TGF-β1 Signaling Pathway

Xian-zong Ye; Sen-lin Xu; Yan-hong Xin; Shi-cang Yu; Yi-Fang Ping; Lu Chen; Hualiang Xiao; Bin Wang; Liang Yi; Qing-liang Wang; Xue-feng Jiang; Lang Yang; Peng Zhang; Cheng Qian; You-Hong Cui; Xia Zhang; Xiu-wu Bian

The invasion of malignant glioma cells into the surrounding normal brain tissues is crucial for causing the poor outcome of this tumor type. Recent studies suggest that glioma stem-like cells (GSLCs) mediate tumor invasion. However, it is not clear whether microenvironment factors, such as tumor-associated microglia/macrophages (TAM/Ms), also play important roles in promoting GSLC invasion. In this study, we found that in primary human gliomas and orthotopical transplanted syngeneic glioma, the number of TAM/Ms at the invasive front was correlated with the presence of CD133+ GSLCs, and these TAM/Ms produced high levels of TGF-β1. CD133+ GSLCs isolated from murine transplanted gliomas exhibited higher invasive potential after being cocultured with TAM/Ms, and the invasiveness was inhibited by neutralization of TGF-β1. We also found that human glioma-derived CD133+ GSLCs became more invasive upon treatment with TGF-β1. In addition, compared with CD133− committed tumor cells, CD133+ GSLCs expressed higher levels of type II TGF-β receptor (TGFBR2) mRNA and protein, and downregulation of TGFBR2 with short hairpin RNA inhibited the invasiveness of GSLCs. Mechanism studies revealed that TGF-β1 released by TAM/Ms promoted the expression of MMP-9 by GSLCs, and TGFBR2 knockdown reduced the invasiveness of these cells in vivo. These results demonstrate that TAM/Ms enhance the invasiveness of CD133+ GSLCs via the release of TGF-β1, which increases the production of MMP-9 by GSLCs. Therefore, the TGF-β1 signaling pathway is a potential therapeutic target for limiting the invasiveness of GSLCs.


Cancer Letters | 2008

Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87

Shi-cang Yu; Yi-Fang Ping; Liang Yi; Zhi-hua Zhou; Jian-hong Chen; Xiao-hong Yao; Lei Gao; Ji Ming Wang; Xiu-wu Bian

A variety of malignant cancers have been found to contain a subpopulation of stem cell-like tumor cells, or cancer stem cells (CSCs). However, the existence of CSCs in U87, a most commonly used glioma cell line, is still controversial. In this study, we demonstrate that U87 cell line contained a fraction of tumor cells that could form tumor spheres and were enriched by progressively increasing the concentration of serum-free neural stem cell medium with or without low dose vincristine. These cells possessed the ability of self-renewal and multipotency, the defined characteristics of CSCs. Moreover, the tumors formed by the secondary spheres displayed typical histological features of human glioblastoma, including cellular pleomorphism, pseudopalisades surrounding necrosis, hyperchromatic nuclei, high density of microvessels and invasion to the brain parenchyma. These results indicate that gradually increasing the concentration of serum-free neural stem cell culture medium with or without vincristine is a simple and effective method for isolation of CSCs to study the initiation and progression of human glioblastoma.


Hepatology | 2012

Nanog regulates self‐renewal of cancer stem cells through the insulin‐like growth factor pathway in human hepatocellular carcinoma

Juanjuan Shan; Junjie Shen; Limei Liu; Feng Xia; Chuan Xu; Guangjie Duan; Yanmin Xu; Qinghua Ma; Zhi Yang; Qianzhen Zhang; Leina Ma; Jia Liu; Senlin Xu; Xiaochu Yan; Ping Bie; You-Hong Cui; Xiu-wu Bian; Cheng Qian

Hepatocellular carcinoma (HCC) exhibits cellular heterogeneity and embryonic stem‐cell–related genes are preferentially overexpressed in a fraction of cancer cells of poorly differentiated tumors. However, it is not known whether or how these cancer cells contribute to tumor initiation and progression. Here, our data showed that increased expression of pluripotency transcription factor Nanog in cancer cells correlates with a worse clinical outcome in HCC. Using the Nanog promoter as a reporter system, we could successfully isolate a small subpopulation of Nanog‐positive cells. We demonstrate that Nanog‐positive cells exhibited enhanced ability of self‐renewal, clonogenicity, and initiation of tumors, which are consistent with crucial hallmarks in the definition of cancer stem cells (CSCs). NanogPos CSCs could differentiate into mature cancer cells in in vitro and in vivo conditions. In addition, we found that NanogPos CSCs exhibited resistance to therapeutic agents (e.g., sorafenib and cisplatin) and have a high capacity for tumor invasion and metastasis. Knock‐down expression of Nanog in NanogPos CSCs could decrease self‐renewal accompanied with decreased expression of stem‐cell–related genes and increased expression of mature hepatocyte‐related genes. Overexpression of Nanog in NanogNeg cells could restore self‐renewal. Furthermore, we found that insulin‐like growth factor (IGF)2 and IGF receptor (IGF1R) were up‐regulated in NanogPos CSCs. Knock‐down expression of Nanog in NanogPos CSCs inhibited the expression of IGF1R, and overexpression of Nanog in NanogNeg cells increased the expression of IGF1R. A specific inhibitor of IGF1R signaling could significantly inhibit self‐renewal and Nanog expression, indicating that IGF1R signaling participated in Nanog‐mediated self‐renewal. Conclusion: These data indicate that Nanog could be a novel biomarker for CSCs in HCC, and that Nanog could play a crucial role in maintaining the self‐renewal of CSCs through the IGF1R‐signaling pathway. (HEPATOLOGY 2012;56:1004–1014)


Biochemical and Biophysical Research Communications | 2010

miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion.

Hongping Xia; Samuel S. Ng; Songshan Jiang; William K.C. Cheung; Johnny Sze; Xiu-wu Bian; Hsiang-Fu Kung; Marie C.M. Lin

Nasopharyngeal carcinoma (NPC), a highly metastatic and invasive malignant tumor originating from the nasopharynx, is widely prevalent in Southeast Asia, the Middle East and North Africa. Although viral, dietary and genetic factors have been implicated in NPC, the molecular basis of its pathogenesis is not well defined. Based on a recent microRNA (miRNA) microarray study showing miR-200 downregulation in NPC, we further investigated the role of miR-200a in NPC carcinogenesis. We found that the endogenous miR-200a expression level increases with the degree of differentiation in a panel of NPC cell lines, namely undifferentiated C666-1, high-differentiated CNE-1, and low-differentiated CNE-2 and HNE1 cells. By a series of gain-of-function and loss-of-function studies, we showed that over-expression of miR-200a inhibits C666-1 cell growth, migration and invasion, whereas its knock-down stimulates these processes in CNE-1 cells. In addition, we further identified ZEB2 and CTNNB1 as the functional downstream targets of miR-200a. Interestingly, knock-down of ZEB2 solely impeded NPC cell migration and invasion, whereas CTNNB1 suppression only inhibited NPC cell growth, suggesting that the inhibitory effects of miR-200a on NPC cell growth, migration and invasion are mediated by distinct targets and pathways. Our results reveal the important role of miR-200a as a regulatory factor of NPC carcinogenesis and a potential candidate for miRNA-based therapy against NPC.


The Journal of Pathology | 2011

The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell‐mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling

Yi-Fang Ping; Xiao-hong Yao; Jian-yong Jiang; Lin-tao Zhao; Shi-cang Yu; Tao Jiang; Marie Cm Lin; Jian-hong Chen; Bin Wang; Rong Zhang; You-Hong Cui; Cheng Qian; Ji Ming Wang; Xiu-wu Bian

Chemokines and their receptors are actively involved in inflammation, immune responses, and cancer development. Here we report the detection of CD133+ glioma stem‐like cells (GSCs) co‐expressing a chemokine receptor CXCR4 in human primary glioma tissues. These GSCs were located in areas adjacent to tumour vascular capillaries, suggesting an association between GSCs and tumour angiogenesis. To test this hypothesis, we isolated CD133+ GSCs from surgical specimens of human primary gliomas and glioma cell lines. As compared to CD133− cells, CD133+ GSCs expressed significantly higher levels of CXCR4 mRNA and protein, and migrated more efficiently in response to the CXCR4 ligand CXCL12. In addition, CXCL12 induced vascular endothelial growth factor (VEGF) production by CD133+ GSCs via activation of the PI3K/AKT signalling pathway. Furthermore, knocking down of CXCR4 using RNA interference or inhibition of CXCR4 function by an antagonist AMD3100 not only reduced VEGF production by CD133+ GSCs in vitro, but also attenuated the growth and angiogenesis of tumour xenografts in vivo formed by CD133+ GSCs in SCID mice. These results indicate that CXCL12 and its receptor CXCR4 promote GSC‐initiated glioma growth and angiogenesis by stimulating VEGF production. Copyright


Cancer Letters | 2011

MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest.

Yanmin Xu; Feng Xia; Leina Ma; Juanjuan Shan; Junjie Shen; Zhi Yang; Jia Liu; You-Hong Cui; Xiu-wu Bian; Ping Bie; Cheng Qian

Hepatocellular carcinoma (HCC) is a hypervascular cancer characterized by rapid progression as well as resistance to conventional chemotherapy. It has been shown that microRNAs play critical roles in pathogenesis of HCC. MicroRNA-122 (miR-122) is a liver-specific microRNA and is frequently downregulated in HCC. In the present study, we investigated whether restoration of miR-122 in HCC cells could render cells sensitive to chemotherapeutic agents adriamycin (ADM) or vincristine (VCR). Our data showed that overexpression of miR-122 in HCC cells induced by adenovirus expressing miR-122 could render cell sensitive to ADM or VCR. Analysis of cell cycle distribution showed that the anti-proliferative effect of miR-122 is associated with increase of cell number in the G2/M phase. Moreover, treatment with Ad-miR122 and ADM or VCR resulted in high accumulation of HCC cells in G2/M phase. We further demonstrated that overexpression of miR-122 could modulate the sensitivity of the HCC cells to chemotherapeutic drugs through downregulating MDR related genes MDR-1, GST-π, and MRP, antiapoptotic gene Bcl-w and cell cycle related gene cyclin B1. Taken together, our findings demonstrated that combination of Ad-miR122 with chemotherapeutic agents inhibited HCC cell growth by inducing G2/M arrest and that this arrest is associated, at least in part, with reduced expression of MDR related genes and Cyclin B1.


Oncogene | 2012

EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin.

Zhu Ting Tong; Muyan Cai; X. G. Wang; L. L. Kong; Shi Juan Mai; Yan Hui Liu; Hongquan Zhang; Y. J. Liao; Fang Zheng; Wei-Guo Zhu; Tian Hao Liu; Xiu-wu Bian; Xin Yuan Guan; Marie Chia-mi Lin; Mu Sheng Zeng; Yixin Zeng; Hsiang-Fu Kung; Dan Xie

The enhancer of zeste homolog 2 (EZH2) is upregulated and has an oncogenic role in several types of human cancer. However, the abnormalities of EZH2 and its underlying mechanisms in the pathogenesis of nasopharyngeal carcinoma (NPC) remain unknown. In this study, we found that high expression of EZH2 in NPC was associated closely with an aggressive and/or poor prognostic phenotype (P<0.05). In NPC cell lines, knockdown of EZH2 by short hairpin RNA was sufficient to inhibit cell invasiveness/metastasis both in vitro and in vivo, whereas ectopic overexpression of EZH2 supported NPC cell invasive capacity with a decreased expression of E-cadherin. In addition, ablation of endogenous Snail in NPC cells virtually totally prevented the repressive activity of EZH2 to E-cadherin, indicating that Snail might be a predominant mediator of EZH2 to suppress E-cadherin. Furthermore, co-immunoprecipitation (IP), chromatin IP and luciferase reporter assays demonstrated that in NPC cells, (1) EZH2 interacted with HDAC1/HDAC2 and Snail to form a repressive complex; (2) these components interact in a linear fashion, not in a triangular fashion, that is, HDAC1 or HDAC2 bridge the interaction between EZH2 and Snail; and (3) the EZH2/HDAC1/2/Snail complex could closely bind to the E-cadherin promoter by Snail, but not YY1, to repress E-cadherin. The data provided in this report suggest a critical role of EZH2 in the control of cell invasion and/or metastasis by forming a co-repressor complex with HDAC1/HDAC2/Snail to repress E-cadherin, an activity that might be responsible, at least in part, for the development and/or progression of human NPCs.


PLOS ONE | 2013

Decrease of 5-Hydroxymethylcytosine Is Associated with Progression of Hepatocellular Carcinoma through Downregulation of TET1

Chungang Liu; Limei Liu; Xuejiao Chen; Junjie Shen; Juanjuan Shan; Yanmin Xu; Zhi Yang; Lin Wu; Feng Xia; Ping Bie; You-Hong Cui; Xiu-wu Bian; Cheng Qian

DNA methylation is an important epigenetic modification and is frequently altered in cancer. Convert of 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation (TET) family enzymes plays important biological functions in embryonic stem cells, development, aging and disease. Recent reports showed that level of 5 hmC was altered in various types of cancers. However, the change of 5 hmC level in hepatocellular carcinoma (HCC) and association with clinical outcome were not well defined. Here, we reported that level of 5 hmC was decreased in HCC tissues, as compared with non-tumor tissues. Clincopathological analysis showed the decreased level of 5 hmC in HCC was associated with tumor size, AFP level and poor overall survival. We also found that the decreased level of 5 hmC in non-tumor tissues was associated with tumor recurrence in the first year after surgical resection. In an animal model with carcinogen DEN-induced HCC, we found that the level of 5 hmC was gradually decreased in the livers during the period of induction. There was further reduction of 5 hmC in tumor tissues when tumors were developed. In contrast, level of 5 mC was increased in HCC tissues and the increased 5 mC level was associated with capsular invasion, vascular thrombosis, tumor recurrence and overall survival. Furthermore, our data showed that expression of TET1, but not TET2 and TET3, was downregulated in HCC. Taken together, our data indicated 5 hmC may be served as a prognostic marker for HCC and the decreased expression of TET1 is likely one of the mechanisms underlying 5 hmC loss in HCC.


Journal of Neuroimmunology | 2011

Glioma-initiating cells: A predominant role in microglia/macrophages tropism to glioma

Liang Yi; Hualiang Xiao; Minhui Xu; Xian-zong Ye; Jun Hu; Fei Li; Mei Li; Chunxia Luo; Shi-cang Yu; Xiu-wu Bian; Hua Feng

The relationship between cancer-initiating cells and cancer-related inflammation is unclear. Exploring the interaction between glioma-initiating cells (GICs) and tumor-associated microglia/macrophages (TAM/Ms) may offer us an opportunity to further understand the inflammatory response in glioma and the cellular/molecular features of the GIC niche. Here,we reported a positive correlation between the infiltration of TAM/Ms and the density of GICs. The capacity of GICs to recruit TAM/Ms was stronger than that of adhesive glioma cells (AGCs) in vitro. In vivo experiments suggested that implantations formed by GICs had a higher level of TAM/M infiltration than those formed by AGCs. Our studies indicate a predominant role of GICs in microglia/macrophages tropism to glioma and a close positive correlation between the distribution of GICs and TAM/Ms. As an important part of cancer-related inflammation, TAM/Ms may participate in the architecture of the GIC niche.


Neurosurgery | 2007

Preferential Expression of Chemokine Receptor CXCR4 by Highly Malignant Human Gliomas and Its Association with Poor Patient Survival

Xiu-wu Bian; Shi-xin Yang; Jian-hong Chen; Yi-fang Ping; Xiang-dong Zhou; Qing-liang Wang; Xue-feng Jiang; Wanghua Gong; Hua-liang Xiao; Lin-lin Du; Zi-qiang Chen; Wen Zhao; Jing-quan Shi; Ji Ming Wang

OBJECTIVECXCR4 is implicated in the growth, metastasis, and angiogenesis of malignant tumors. We investigated the potential role of CXCR4 in human gliomas. METHODSThe expression of CXCR4 messenger ribonucleic acid and protein by human glioma cell lines was examined by reverse-transcriptase polymerase chain reaction and immunocytochemistry analysis. Tumor cell chemotaxis and production of vascular endothelial growth factor induced by the CXCR4 ligand SDF-1β were measured. Xenograft models were used for evaluation of glioma cell tumorigenesis. CXCR4 expression by xenografted tumors and primary human glioma specimens were evaluated for CXCR4 protein expression. The relationship between CXCR4 expression and patient survival was analyzed. A synthetic lipoxygenase inhibitor, Nordy, was tested for its effects on glioma cell expression and function of CXCR4, as well as on glioma cell tumorigenicity. RESULTSCXCR4 expression correlated directly with the degree of malignancy of the human glioma cell lines and primary tumors. Activation of CXCR4 induced tumor cell chemotaxis and increased production of vascular endothelial growth factor. Glioma cells expressing higher levels of CXCR4 formed more rapidly growing and lethal tumors in nude mice. Primary human glioma specimens expressing CXCR4 contained high-density microvessels. Patients with CXCR4-positive gliomas had poorer prognosis after surgery. The lipoxygenase inhibitor Nordy diminished CXCR4 expression by glioma cell lines in vitro and reduced their tumorigenicity in nude mice. CONCLUSIONThe level of CXCR4 expression seems to correlate with the degree of malignancy of human gliomas and may contribute to their rapid growth.

Collaboration


Dive into the Xiu-wu Bian's collaboration.

Top Co-Authors

Avatar

You-Hong Cui

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xia Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi-Fang Ping

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiao-hong Yao

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Shi-cang Yu

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jian-hong Chen

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Cheng Qian

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yu Shi

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Lang Yang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qing-liang Wang

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge